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SUMMARY

This work develops an analytical framework for distributed management of

large networks where each node makes locally its management decisions. For example,

in wireless networks, individual nodes locally adjust physical and logical configuration

through information exchange with neighbors. Two issues remain open. One is the

optimality, i.e., whether a distributed algorithm would result in a near-optimal net-

work management. The other is the complexity, i.e., whether a distributed algorithm

would scale gracefully with a network size. We study these issues through modeling,

approximation, and randomized distributed algorithms.

In this thesis, we show when distributed management is nearly optimal. To do so,

we first derive a global probabilistic model of a set of network management variables

which characterizes the complex spatial dependence of the variables. The spatial

dependence results from externally imposed management constraints and internal

properties of communication environments (e.g., interference in the wireless channel).

The global model is thus determined by these internal network characteristics and

management requirements. We then apply probabilistic graphical models in machine

learning to show when and whether the global model can be approximated by a local

model. This study results in a sufficient condition for distributed management to be

nearly optimal: the global model on a network management needs to be approximated

within a given approximation error bound. We quantify the sufficient conditions for

the near-optimality of the local model. We then show how to obtain a near-optimal

configuration through decentralized adaptation of local configurations.

The sufficient conditions for the near-optimality of the local model depends on the

communication networks and environments. We provide the sufficient near-optimality

xiii
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conditions on both wireless and multi-class networks. We next derive a near-optimal

distributed inference algorithm based on the local model.

For large wireless networks, the proposed approach is applied to (a) forming a

1-connected physical topology, (b) configuring a logical topology through spatially

scheduling link activities, and (c) reconfiguring locally from failures. For multi-class

networks, we characterize the trade-off between near-optimality and complexity of dis-

tributed decisions of policy-based resource allocation. In such networks, the routed

paths of random source-destination pairs cause the spatial dependence on the deci-

sions at nodes.

We validate our formulation and theory through simulations. We show that the

distributed algorithm can obtain a near-optimal network management at a bounded

communication cost; whereas, centralized schemes have a computation/communication

cost that grows proportionally with the size of the network.

xiv
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CHAPTER I

INTRODUCTION

1.1 Motivation

As the network size increases, the management complexity gets increased accord-

ingly. The management of large and complex networks is a challenging topic. For

the feasibility of the management of large and complex networks, the management

function should be scalable to the network size. The scalability can be achieved

with distributed management. Distributed management can be defined as each node

decides its own management parameters (e.g., transmission power, channel-access,

position for wireless networks; rate-control, call-drop, call-preemption for wired core

networks) independently and asynchronously based on the neighbors’ information.

Distributed network management is imperative for these large networks where each

node needs to make decisions locally with information exchange only with neighboring

nodes. For example, in wireless infrastructureless networks, each node adjusts locally

its physical and logical configuration through information exchange with neighbors.

Many heuristic algorithms have been developed with promising results in this area.

However, two issues remain open. One is the optimality, i.e., whether a distributed

algorithm would result in a near-optimal network management. The other is the

complexity, i.e., whether a distributed algorithm would scale gracefully with a net-

work size. We study these issues through modeling, approximation, and randomized

distributed algorithms.

Modeling defines the optimality. We derive a global probabilistic model for a

distributed network management which characterizes jointly the statistical spatial

dependence of various network management variables of different layers. The model

1
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is a Gibbs distribution that results from internal network properties (e.g., for wireless

networks, node positions, wireless channels and interference); and external manage-

ment constraints (e.g., for wireless networks, physical connectivity, signal quality and

configuration costs). When the global model can be approximated within a given

error bound by a local model, the local model is near-optimal. The complexity of the

local model is characterized by the communication range among nodes. A trade-off

between an approximation error and complexity results in sufficient conditions on

near-optimality. When the probabilistic spatial dependence of links decays slowly,

the scaling property is poor and results in an inefficient approximation by a local

model. Otherwise, it results in a moderate scaling and an efficient approximation by

a local model. For example, when the wireless channel decays slowly, the aggregated

interference is large, and a node needs to communicate with O( 3
√
N) neighbors for the

resulting configuration to be near-optimal, where N is the size of the network. This

shows and an inefficient approximation by a local model. On the contrary, when the

wireless channel decays rapidly, the aggregated interference is small, and a node only

needs to communicate with O(1) neighbors, resulting in an efficient approximation

by a local model.

When the local model belongs to a Markov Random Field [33] [41], where the spa-

tial dependence of network management variables shows the spatial Markov property,

we can use a class of randomized distributed algorithms that are provided by Markov

Random Fields. Due to complexity constraints, the allowable neighborhood size is

usually bounded as a small value. Thus, we show the near-optimality conditions

with a given neighborhood system as a function of complexity constraints, channel

condition, node density, traffic distribution, and etc. If the dependency graph of the

local model shows a spatial Markov dependence, distributed decisions based on the

probabilistic network model asymptotically converge to the global optimal ones with

moderate complexity [33]. These randomized distributed algorithms allow each node

2
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to make distributed decisions based on information from the neighbors.

The distributed algorithms are applied to wireless infrastructureless networks with

the examples of (a) forming a 1-connected physical topology, (b) configuring a logical

topology that maximizes the spatial channel reuse, and (c) reconfiguring locally from

failures. The algorithms are also applied to wired multi-class networks with the

example of preemption-based resource allocations.

To understand the scalability of policy-based resource allocation in multi-class

networks, we represent the resource allocation problem with a graph and convert the

problem into a routing problem. The complexity of centralized and optimal decision

is known to be NP-complete.

To cope with this complexity, the cause of complexity needs to be investigated.

Moreover, to overcome this complexity, distributed approach is a necessity. We in-

vestigate whether and when the probabilistic model-based approach can achieve a

near-optimal performance with a moderate complexity.

We validate our model, approximation and randomized distributed algorithms

also through simulations. Hence, the objective of this research is to contribute to

fundamental understanding of the near-optimality conditions for the scalable and

distributed management of large networks.

1.2 Background and Related Work

In this section, we review state-of-the-art techniques for distributed management of

large wireless/multi-class networks.

1.2.1 Distributed Management and Optimality

The theoretical foundation of the distributed management can be found from the

emergence theory [88]. It shows that a simple local interaction among neighboring

3
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nodes can result in a complex group behavior of an autonomous system. The emer-

gence property is found in many research areas: coherent pattern formation in physics

and chemical systems [61], motion of swarm in biology [42], behavior of social groups,

particular shape formation in control area [88], self-wiring of networks (e.g., neuron

network, circuits), and autonomous self-configuration of wireless network topology.

The emergence theory shows the possibility of distributed self-management of large

autonomous systems.

The distributed network management provides a promising paradigm for the net-

work self-management. In the ad-hoc wireless network, the main management pa-

rameters are transmission power, node position and mobility, and link activity. Some

existing models and algorithms are proposed to manage these management parame-

ters in a distributed fashion. The relative positions of mobile nodes are characterized

with the swarm network models, and the self-configuration schemes are studied. The

self-configuration scheme is derived by observing the local behavior of swarm groups:

Levine et. al show the self-organization of self-propelled particles [61]; Junginger et.

al study the self-organizing publish/subscribe middle-ware for dynamic peer-to-peer

networks [54]; and Baras et. al show how to control autonomous swarms for certain

formations [10]. These approaches are heuristic, and the performance measure com-

pared to the optimal solution is not available. Mcdonald et. al provide a dynamic

distributed clustering algorithm [72], which organizes the ad-hoc wireless network

into clusters in which the probability of path availability is bounded. This work is

not general but specifically focused on the studied problem.

Based on the wireless channel model, the distributed power control methods are

proposed [30] [40]. Most work is done considering the fixed CDMA wireless net-

work. Holliday et. al worked on self-optimizing the transmission power [40], and

the transmission power of each node is optimized to satisfy the pre-defined signal-

to-interference noise (SINR) ratio. Zuniga and Krishnamachari show the optimal

4
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transmission power for minimizing the settling time in network flooding events. Chi-

ang et. al [24] provide a distributed power control algorithm based on the sum product

algorithm on graphs. For the multiple access control (MAC) layer, the link activities

are decision variables. The contention graph and the conflict graph can describe the

channel contention at the link layer [66], [62]. With conflict graph, Brar et. al [17]

derive a centralized heuristic link-scheduling algorithm, which is based on the SINR

physical channel contention model and whose complexity is only polynomial. [17]

provides an approximation bound on its performance relative to optimal scheme and

evaluates the proposed scheme extensively through simulation under representative

wireless mesh network scenarios. However, as mentioned in [17], distributed scheme

is still missing and provides an interesting possibility. Linear programming is used

to find the optimal value of the link activities [83], which is a centralized scheme.

Luo et. al [66] show the fair scheduling methods at the link layer of ad-hoc wireless

networks. For the network and above layer, only little work has been done yet. The

terminodes project [43] studies the self-organization of the ad-hoc wireless network,

which means the network runs solely by the operation of end users. This project

considers all layers and inter-layer interactions concurrently, and aims a paradigm

shift in network management.

For the management of a large network with local cooperations in a random

environment, the existing works may be insufficient. Some of existing work uses ad-

hoc and heuristic methods based on empirical studies. They may work well sometimes;

however, when and why they work is often not well-understood and needs to be

characterized with the related parameters (e.g., channel condition α, number of nodes

N). Other existing works ask for satisfying too sufficient conditions, which costs

redundant network resources.

5
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To provide a solid understanding about the trade-off between optimality and com-

plexity of distributed management, we use a bottoms-up approach that incorporates

all related parameters in a single quantity.

1.2.2 Probabilistic Graphical Models: Spatial Dependence of Complex
Systems

Graphical models have been used to represent the spatial dependence in complex

systems. Hammersley-Clifford Theorem [33] shows that among various graphical

models, an interesting type of probabilistic graphical models where a random variable

is conditionally independent of the others given its neighbors is Markov Random Field.

In particular, when the neighborhood is much smaller than the size of a network, the

conditional independence implies an interesting type of spatial Markov dependence,

i.e., a node depends on its far neighbors through neighbors’ neighbors. Such a nested

dependence can be shown explicitly through local connectivities among nodes in a

dependency graph. The resulting probability distribution is thus factorizable in terms

of local probability distributions.

In addition to their wide applications in image processing [33], Markov Random

Fields have been used to model the cooperation of mobile agents [10]. One other

related work is a cross-layer graphical model developed for optical networks [64].

There a Bayesian belief network models the attack propagation at the physical layer,

and a Markov Random Field models the spatial dependence of routes at the network

layer.

We propose to investigate the trade-off between near-optimality and complexity

of the distributed management of large wireless (or wired multi-class) networks in a

Markov Random Field.
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1.2.3 Management of Wireless Network Configuration

The reliable communication of an active flow depends on both the physical and logi-

cal connectivity between the source and destination pair of the active flow [72]. The

physical connectivity of an active flow indicates the existence of physical connectivity

between intermediate nodes between the source and destination pair of the active

flow. The logical connectivity means that the intermediate links satisfy the SINR

requirement.

Physical topology: In the prior work, topology formation focuses on configuring

a physical topology [69] and reconfiguring mobile sensor networks [102], and has been

investigated for emerging behavior of mobile nodes [88] [10], intelligent agents [91],

information management units, and mobile robots [21]. There, topology formation

is usually treated through modeling the behavior of a system externally rather than

internally. Hence the resulting model may not be able to characterize internal prop-

erties of a network.

Logical topology: In wireless LAN networks, every node resides in the trans-

mission range of the other nodes, resulting in an efficient IEEE 802.11 RTS/CTS

handshake [94] and a reliable link quality.

However, in wireless ad hoc networks, RTS/CTS handshake can fail to detect

hidden nodes, which is due to heterogeneous transmission range among transmitters

[97] [94]. Hidden and exposed terminal problems in ad hoc networks are more serious

than in wireless LAN networks [94] [96]. [28] issues a potential problem of 802.11,

which ignores interference outside a certain channel-contention range, which corre-

sponds to the interference range in this work. This means that the logical link may

not be reliable.

As these works investigate the interference due to the transmitters outside the

7
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transmission range, little has been done to quantify jointly the effects of channel en-

vironments α, densities of nodes and communication node-pairs, and optimality of

distributed configuration management onto the reliability of logical links.

In this work, we show that both a physical and a logical topology are coupled

and should be considered jointly. Such a joint treatment allows not only a physical

topology but also a logical topology as well as their combinations to be configured

in a fully distributed fashion. Another challenge is to provide a reliable transport

network for active flows in a fully distributed fashion.

1.2.4 Management of Policy-based Resource Allocation

Resource Allocation Policy: Many resource allocation policies are proposed for

the multi-class networks [11]. The guaranteed minimum policy makes each service

class get its own small partition and the shared pool of resources; the upper limit

policy puts an upper limit on the number of connections to each class; the complete

partitioning policy allocates each class a set of resources that can only be used by

the class; and the preemption policy allows a high-priority connection to preempt the

active lower-priority connections.

Although many studies have been done about the resource allocation problem in

the multi-class networks, the problem of strictly prioritized multi-class networks has

not been studied enough (e.g., complexity of optimal decision). For the resource allo-

cation problem in the strictly prioritized multi-class networks, the preemption policy

is known to perform better than the representative upper limit policy [11][12].

Preemption-based resource allocation: When a network is so heavily loaded

that the network cannot accept a new connection any more and the arrival patterns

8
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of the connection request are unknown, or when a link or node failure happens, a con-

nection preemption event may be triggered. The preempted flows may be rerouted,

and the preempting and rerouting procedure continues until the lowest class is pre-

empted and rerouted. The existing connection preemption algorithms decide which

connections to preempt on the preempting route that is predetermined by a routing

algorithm. The existing connection preemption algorithms are implemented either

in a centralized or decentralized fashion. The complexity of preemption problem is

known to be NP-complete [32], thus there are lots of practical and heuristic algorithms

in the literature. However, the cause of complexity needs to be investigated, and dis-

tributed decisions can be applied to reduce complexity with a moderate performance

degradation.

1.3 Problem Description

In the wireless networks, as the network size increases, the management of the large

wireless network is a challenging topic. For the feasibility of the management of large

and complex networks, the management function should be scalable to the network

size. The scalable wireless management can be achieved with distributed management

(i.e., independent and asynchronous decisions of individual nodes except local infor-

mation exchange). That is, distributed network management is imperative for these

large networks where each node needs to make decisions locally with information ex-

change with neighboring nodes. For example, in wireless infrastructureless networks,

each node adjusts locally its physical and logical configuration through information

exchange with neighbors. However, as the network size increases, to maximize the

resource utilization, the spatial reuse needs to be maximized. The spatial-reuse max-

imization increases the accumulated interference, which could make the distributed

management fail to make the approximation error bounded. The distributed man-

agement in wireless networks can be characterized with the trade-off between the
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near-optimality and complexity. These issues can be studied through modeling, ap-

proximation, and randomized distributed algorithms.

In the wired networks, the policy-based resource allocation in multi-class networks

is known to have NP-complete complexity, thus most existing works are heuristic

and decentralized ones. Centralized preemption is optimal but computationally in-

tractable. Decentralized preemption is computationally efficient but may result in

a poor performance. An open issue is to derive the complexity upper bound of the

optimal preemption decision. Moreover, to understand the cause of complexity of the

centralized and optimal preemption-based resource allocation in multi-class networks,

we investigate the cause of complexity and investigate whether a distributed decision

can achieve a near-optimality with a moderate complexity.

The other open issue is to study whether and when distributed preemption can

achieve a near-optimal performance at a moderate complexity. The complexity orig-

inates from the spatial dependence of preemption decision variables at individual

nodes. A challenge is how to characterize and coordinate efficiently a large number

of spatially-dependent preemption-decision variables. Machine learning provides a

framework to study these issues.

1.4 Our Approach

In this thesis, to understand the scalable and near-optimal configuration management

of large and complex wireless networks, we count on a model-based approach. Thus,

our first step is to develop a probabilistic cross-layer network model which represents

both the spatial dependence of the network state variables (e.g., node position, link

channel-access, transmission power) and the affects of random environments (e.g.,

GPS position error, channel noise).

In our view, the optimality of configuration management should be considered

10
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in a model-based framework. The reason is that if network configurations can be

modeled, and a model characterizes the ground truth, optimality can be defined ac-

cordingly. Centralized configuration management can be used to define the optimality

of a network configuration so that nodes are not limited by the scope of information

exchange.

Three factors are considered in modeling of distributed management of a large

network: randomness resulting from a network internally (e.g., wireless channel, in-

terference), management constraints imposed externally (e.g., SINR, link-rate), and

distributed decisions made by nodes (e.g., limited management information). For

instance, randomness in wireless networks is challenging to model [52].

Nodes make asynchronous and randomized decisions in adjusting a configuration

in a distributed setting. The model is developed from bottoms-up approach by map-

ping these three factors onto a probability distribution. The model is thus accurate in

regard to the assumed communication environments, constraints and node decisions.

Overall, such a model characterizes statistical spatial dependence of nodes/links in a

network configuration.

To obtain an analytical form of the probabilistic model, we adopt an analogy be-

tween network decision variables (e.g., channel-access, flow-preemption-decision) of a

network and interacting particles of a particle system in statistical physics [41][101].

The analogy allows us to apply a notion of “system Hamiltonian” [63] to quantify a

network configuration. The Hamiltonian corresponds to an artificial system energy

of a large network. The system energy combines both the internal randomness and

external constraints into a single quantity. The Hamiltonian is then used to obtain a

probabilistic model which is known as a Gibbs distribution [41]. Such a Gibbs distri-

bution is for an entire “network” management decision (i.e., network configuration)

and thus corresponds to a global probabilistic model.
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The derived global model can be approximated with a local model. The near-

optimality of distributed management depends on the near-optimality of the local

model (i.e., whether the local model is accurate enough to the global model within

an error bound). To investigate the near-optimality of the local model, we use the

probabilistic graphical models and graph theory.

A Gibbs distribution can be represented with a probabilistic graphical model in

machine learning [33][53]. The graph provides a simple and explicit representation

of statistical spatial dependence in a network configuration. If the corresponding

dependency graph of the local model exhibits a nested spatial Markov dependence,

the approximation error corresponds to the ignored long range dependency links in

the dependency graph.

How good is the approximation? The approximation error depends on communica-

tion environment (e.g., random routed paths of active flows, power decay of wireless

channel, density of nodes, physical topology, and management constraints). For a

large-size network, we investigate when and whether the approximation error resides

within a desired error-bound as the network size increases. When the approximation

error is within a given bound, a local model is near-optimal.

Once the local model belongs to a Markov Random Field, whose approximation

error is within an error bound, we can use a class of randomized, distributed and it-

erative algorithms (e.g., stochastic relaxation, sum-product algorithm), where nodes

self-configure through local information exchange with neighbors. The range of infor-

mation exchange characterizes the local connectivity on the probabilistic dependency

graph, and defines the communication complexity. Node decisions are probabilistic,

corresponding to randomized distributed algorithms of graphical models. Distributed

algorithms are applied into physical/logical topology formation and localized failure

recovery.
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To understand the feasibility of distributed resource allocation in multi-class net-

works, we propose to characterize the computation complexity of centralized and

distributed decisions of resource allocation in multi-class networks. Especially, we

study the preemption-based resource allocation in multi-class networks (such as multi-

protocol label switching (MPLS) networks).

Connection preemption has been studied for the efficient resource management in

the multi-class networks; however, there are only heuristic algorithms in the literature.

We provide an upper-bound of the centralized optimal preemption problem, which

is based on converting the preemption problem into a routing problem on a virtual

graph. The complexity is known to be NP-complete.

To investigate the cause of complexity and the feasibility of near-optimality de-

cisions, we count on a probabilistic distributed preemption decision, based on the

machine learning approach.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, we develop an analytical framework

for the near-optimal distributed management of multi-hop wireless networks. We

study the optimality of a network configuration through modeling. We begin with a

global model that characterizes the ground truth in regard to assumptions of networks.

The ground truth includes internal network characteristics on a wireless channel, a

random physical and logical configuration, node decisions, and external management

constraints. The model is a Gibbs distribution where the exponent can be regarded as

a cost function. This relates the modeling with optimization. The global probabilistic

model characterizes the spatial dependence of node positions and link activities with

management constraints. The global model can be approximated with a local model.

Near-optimality conditions for such an approximation are derived under different

channel conditions, density of nodes, network size and management requirements.
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The optimality condition is coupled with the communication complexity which is the

total number of interference neighbors in distributed self-configuration.

In Chapter 3, we derive a complexity upper-bound of the connection preemption

problem. To do so, we propose to consider the preemption problem in the domain of

a routing problem. Our approach is to represent the preemption problem with a flow

graph (i.e., a virtual network topology), where each feasible route represents a feasible

set of flows to be preempted. The least-cost route can be found with a least-cost

routing algorithm; therefore, the complexity can be derived from that of the routing

problem.

We also consider the preemption problems with both soft and strict (preemption)

priority orders. With soft preemption order, the corresponding graph of the pre-

emption problem is called the “multi-layer virtual topology” and we estimated its

complexity as being very high. With strict priority orders, the preemption problem

in a multi-class network can be segmented with multiple preemption problems of dif-

ferent priorities. The corresponding virtual topology of each priority is shown to be

relatively simple. We compare these results with those obtained with distributed and

centralized decisions.

In Chapter 4, we investigate distributed preemption where nodes make deci-

sions whether and which flows to preempt using local information from neighboring

nodes. Connection preemption is a key component for multi-class MPLS networks but

known to be NP-complete. Centralized preemption is optimal but computationally

intractable. Decentralized preemption is computationally efficient but may result in

a poor performance. Our goal is to study whether and when distributed preemption

can achieve a near-optimal performance at a moderate complexity. The complexity

originates from the spatial dependence of preemption decision variables at individual
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nodes. A challenge is how to characterize and coordinate efficiently a large number

of spatially-dependent preemption-decision variables. Machine learning provides a

framework to study these issues.

We first model a large number of distributed decisions using probabilistic graphical

models in machine learning. We then define the near-optimality when the distributed

preemption decisions approximate that of the optimal centralized preemption within

a given error bound. We show that a sufficient condition for distributed preemp-

tion to be optimal is that local decisions constitute a Markov Random Field. The

decision variables, however, do not possess an exact spatial Markov dependence in

reality. Hence we derive sufficient conditions on traffic patterns of flows so that the

distributed preemption is near-optimal at a cost of obtaining information from only

a few neighbors.

We develop, based on the probabilistic graphical models, a near-optimal dis-

tributed algorithm. The algorithm is used by each node to make collective preemption

decisions.

In Chapter 5, we conclude the thesis with discussions about the future direction

of this research.
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CHAPTER II

DISTRIBUTED CONFIGURATION MANAGEMENT OF

WIRELESS NETWORKS

2.1 Introduction

Wireless infrastructureless networks include sensor- and actor-networks, wireless mesh

networks, and agent networks. A configuration of such a network is composed of a

physical and a logical topology (configuration). A physical configuration is charac-

terized by node positions and connectivity. A logical configuration is characterized

by activities of links, i.e., a pattern of node-node communications on who is commu-

nicating with whom and when. For wireless networks, both a physical and a logical

configuration can vary due to either failures or environmental changes. Configuration

management is to adapt a physical and/or a logical topology to support and maintain

active flows.

Generally, there is no centralized management authority for infrastructureless

wireless networks. Hence self-configuration is desirable where nodes can adaptively

adjust their own positions and communication patterns in a distributed fashion through

local interactions. A challenge is whether distributed self-configuration would result

in a near-optimal configuration with a sufficiently small approximation error.

In this work, we develop an analytical model for distributed self-configuration,

and study the issue of near-optimality. For simplicity, we focus on ad-hoc wireless

networks without mobility.

What is optimality? Deterministic optimization has been used to obtain an op-

timal solution for centralized management [15][24][28][68]. A key idea is to derive a
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cost function that consists of management objectives and constraints. An optimal so-

lution is obtained through global optimization of the cost function. Such an approach

has been applied widely, e.g. to network capacity maximization through adapting a

physical topology [37], and to link-scheduling through configuring a logical topology

[15]. Such deterministic approaches, however, do not consider random factors such

as inaccurate node positions, wireless channel, interference, and locally interacting

wireless nodes. One other open issue is whether a cost function itself is optimal. This

issue cannot be resolved in a conventional optimization framework.

From a computational standpoint, global optimization requires a centralized en-

tity to maintain and update complete information for all nodes in the network. This

is impractical for large networks. More importantly, locality can be generic to config-

uration management. For example, in a large wireless network, nodes and links often

fail locally. A local repair is thus desirable for preventing an entire network from suf-

fering incessant re-configurations. Therefore, distributed configuration management

is a necessity for large wireless networks [15][52].

In a distributed setting, each node either adjusts its own physical position or de-

cides when to transmit to whom based on local information. This should be done in

a fully asynchronous and independent fashion with local information exchange. Local

information on a configuration may include physical locations and communication ac-

tivities (channel-access) of neighbors. Such information can be either sensed locally

at a node or exchanged with neighbors. The range of information-exchange character-

izes communication complexity. When the information-exchange is performed among

only close neighbors, the resulting distributed algorithm would scale gracefully with

a network size.

Numerous distributed algorithms and protocols have been developed for topology
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formation [21][88][91] using local information (see [103] and references therein). Self-

organizing protocols have been developed for sensor networks [29][79] and p2p self-

stabilizing networks (see [58] and references therein). These distributed algorithms

are deterministic. [10] is one of a few approaches that use a probabilistic model to

characterize the randomness in node positions.

These distributed approaches provide promising empirical results. Yet the local

rules used in the distributed algorithms are generally heuristic, and the performance

of the algorithms is tested through simulation. Little has been done to quantify con-

ditions on when and how the distributed management can result in a near-optimal

configuration. It has been generally considered as a difficult problem to develop a dis-

tributed algorithm with a predictable performance [95]. Hence the open questions are

◦ What measures the optimality of centralized-configuration management, and the

near-optimality of distributed-configuration management?

◦ When is it possible for distributed management to achieve a near-optimal con-

figuration?

◦ How to derive distributed algorithms that obtain a near-optimal configuration?

This work intends to study these issues through modeling, approximation, and

algorithms.

(a) Global Model and Optimality: In our view, the optimality of configuration

management should be considered in a model-based framework. The reason is that if

network configurations can be modeled, and a model characterizes the ground truth,

optimality can be defined accordingly. Centralized configuration management can be

used to define the optimality of a network configuration so that nodes are not limited

by the scope of information exchange.
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We consider three factors in a model of configuration, randomness resulting from

a network internally, management constraints imposed externally, and distributed de-

cisions made by nodes. Randomness in wireless networks is challenging to model [52].

This work begins with simple scenarios where the randomness results from random

node positions, interference due to wireless channel conditions, and node-node com-

munication. Fading is not considered in this work for simplicity. Management con-

straints include requirements on physical connectivity and signal quality, i.e., signal-

to-interference plus noise ratio (SINR). Nodes make asynchronous and randomized

decisions in adjusting a configuration in a distributed setting. The model is developed

from bottoms-up by mapping these three factors onto a probability distribution. The

model is thus accurate in regard to the assumed wireless channel, constraints and

node decisions. Overall, such a model characterizes statistical spatial dependence of

nodes/links in a network configuration.

To obtain an analytical form of the probabilistic model, we adopt an analogy

between link activities and node positions of a wireless network and interacting par-

ticles of a particle system in statistical physics [41][101]. The analogy allows us to

apply a notion of “configuration Hamiltonian” [63] to quantify a network configura-

tion. The configuration Hamiltonian corresponds to an artificial system energy of a

wireless network. The system energy combines the physical topology, link activities,

and management constraints into a single quantity. The configuration Hamiltonian

is then used to obtain a probabilistic model which is known as a Gibbs distribution

[41]. Such a Gibbs distribution is for an entire “network” configuration and thus

corresponds to a global probabilistic model.

(b) Local Model and Probabilistic Graphs: We then obtain an approximation

of the global model referred to as a local model of network configurations. How to

approximate the global model? There is a one-to-one mapping between a Gibbs
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distribution and a probabilistic graphical model in machine learning [33][53]. The

graph provides a simple and explicit representation of statistical spatial dependence

in a network configuration.

We show that a probabilistic graph of the global model belongs to a two-layer

random-field. One layer is for a random physical configuration, and the other is for

a random logical configuration. The graph is fully connected, where the long-range

spatial dependence results from the interference among far-away nodes due to wire-

less communication. When the long-range interference can be neglected, the global

model can be approximated by a two-layer coupled Markov Random Field which is

also called a Random Bond model. The corresponding dependency graph exhibits

a nested spatial Markov dependence for both a physical and logical configuration.

Mathematically, such a spatial Markov dependence can be represented as a product

of local conditional probability density functions [33]. Hence the probabilistic graph-

ical model shows which “dependency links” to remove, resulting in a local model.

How good is the approximation? We define an approximation error between the

local and global model. The approximation error depends on power decay of wire-

less channel, density of nodes, physical topology, and management constraints. For

a large-size network, we show that the approximation error resides within a desired

error-bound when the total interference from far-away nodes decreases faster than

the growth of the number of interfering nodes as the network size increases. When

the approximation error is within a given bound, a local model is near-optimal.

(c) Distributed Algorithm: A local model, i.e., Markov Random Field, allows

a class of distributed algorithms where nodes self-configure through local information

exchange with neighbors. The range of information exchange characterizes the local

connectivity on the probabilistic dependency graph, and defines the communication

complexity. The actual information exchanged includes relative positions of neighbors
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and activities of adjacent nodes. Node decisions are probabilistic, corresponding to

randomized distributed algorithms of graphical models.

We apply the distributed algorithm to examples in three aspects of self-configuration:

(a) forming a 1-connected physical topology from a random initial topology; (b) con-

figuring a logical topology that maximizes spatial channel-reuse and incessant com-

munication demands; and (c) reconfiguring a physical- and logical-configuration upon

failures. Configuring a logical topology is done in the context of scheduling [31]. This

framework would allow fully distributed spatial scheduling algorithms and fault tol-

erance for wireless infrastructureless networks.

2.2 Problem Formulation

2.2.1 Assumptions

Consider a wireless network with the following assumptions.

Physical Layer: All nodes share a common frequency channel1. A pair of nodes

within a communication range can communicate directly with an omni-directional

antenna. The wireless channel follows a path-loss model with a power attenuation

of factor α ∈ {2 ∼ 6}. For simplicity, shadowing and/or multi-path fading are not

considered in this work. Node i transmits with power Pi, where 0 ≤ Pi ≤ Pmax,

1 ≤ i ≤ N , with Pmax being the maximum transmission power, and N being the

number of nodes in the network. Power control is not considered in this work.

MAC Layer: Let SINRth be a given threshold for the SINR requirement. Node

i can transmit to node j when the SINR requirement is satisfied, i.e., SINRij =

1An extension to multiple channels is straightforward, and will be considered in a subsequent
work.
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Pil
−α
ij

Nb+
P

(m,n) 6=(i,j) Pml
−α
mj

≥ SINRth, where lij is the distance between node i and j, and Nb

is noise power. We consider a scheduled resource allocation that is implemented with

local interactions among neighbors.

Configuration Management: Consider a wireless network with N nodes. Let Xi0

and Xi be a desired and an actual location of node i, for 1 ≤ i ≤ N . X =

{X1, · · · , XN} are random positions of nodes in a network where the randomness

results from measurement errors, perturbed positions, and random movements.

Let σij denote channel-access of link (i, j), where σij = 1 if node i is transmitting

to node j; and σij = −1, otherwise. σij is referred to as a “communication dipole”

in this work, for 1 ≤ i, j ≤ N , i 6= j, and σ = {σ1,2 , · · · , σN,N−1
} denotes a set of

link activities in the network. Link activities are assumed to be random as they are

triggered by network-layer random traffic demands. A logical configuration is σ =

{σij}. A network configuration is (σ,X).

The objectives are to achieve distributed configuration management, i.e., to (a)

form a desired physical topology, (b) schedule the resource utilization at a given

time to maximize the spatial channel-reuse with a desired SINR requirement, and (c)

reconfigure upon failures by minimizing a reconfiguration cost.

2.2.2 Formulation

Let P(σ,X) be a true probabilistic model of a network configuration that results

from the above assumptions. The model is referred to as the global model.

Definition 1. Optimal Configuration: (σ∗,X∗) is an optimal configuration if it

maximizes the global likelihood,

(σ∗,X∗) = arg max
(σ,X)

P (σ,X). (1)
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Let P l(σ,X) be an approximation of the probabilistic network model P(σ,X).

P l(σ,X) is referred to as the local model.

Definition 2. Near-Optimal Configuration: Consider (σ̂, X̂) that maximizes P l(σ,X),

i.e.,

(σ̂, X̂) = arg max
(σ,X)

P l(σ,X). (2)

Consider an approximation error as the average relative difference between the log

likelihoods,

E[∆] = E

[∣

∣

∣

∣

∣

logP (σ∗,X∗) − logP (σ̂, X̂)

logP (σ∗,X∗)

∣

∣

∣

∣

∣

]

. (3)

For a given ǫ > 0, if E[∆] ≤ ǫ, (σ̂, X̂) is near-optimal.

Distributed configuration management requires that P l(σ,X) is factorizable, i.e.,

P l(σ,X)=
∏

ij gij(σ,X), where gij(σ,X) is a localized probability density function

that depends on variables in a neighborhood of node i, node j and link (i, j) for

1 ≤ i, j ≤ N . The global maximization from Eq.(1) would reduce to a set of coupled

local maximizations, i.e., (σ̂ij , X̂i) = arg max(σij ,Xi) gij(σ,X) for 1 ≤ i, j ≤ N .

Our tasks are to

(a) obtain a global model P(σ,X) from the above given assumptions;

(b) represent the spatial dependence of a configuration using a probabilistic graph-

ical model for P(σ,X). Obtain a simplified graph and a mathematical representation

for P l(σ,X);

(c) obtain sufficient conditions for P l(σ,X) to result in a near-optimal configura-

tion;

(d) derive a distribution algorithm, and apply the algorithm to examples of self-

configuration.
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2.3 Global Model

We begin by developing a global model that characterizes probabilistic spatial depen-

dence in a network configuration. Our approach is bottoms-up so that the probabilis-

tic model can be obtained faithfully based on given assumptions and management

constraints.

2.3.1 Logical Configuration

We begin with modeling a logical configuration given node positions.

2.3.1.1 Example

First consider through a simple example why a logical configuration should be con-

sidered as random. Consider a linear network in Figure 1. Assume that the channel-

contention requires any two active links to be separated by at least two silent links.

Assume that the network achieves the spatial channel-reuse maximization, i.e., the

total number of concurrent active links is maximized through either centralized or

distributed algorithms. Centralized decision is done by a node with the complete

information on a physical topology and link activities. In contrast, distributed de-

cisions are done at each node iteratively with only local information exchange with

neighbors.

 

1  2  3  4  5  6  7  8  9  10  

 

Figure 1: An Example Network with 10 Nodes and 9 Directional Links.

A configuration of link activities is triggered by network-layer traffic demands

(random flows) [64]. Figure 2 shows all possible logical configurations given a phys-

ical topology and all-to-all traffic demands. Each row corresponds to a snapshot of

active links at a time epoch, and those active links should satisfy the aforementioned
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contention requirement2. For example, the first row denotes a configuration where

both link (3, 4) and (8, 9) are active. There are 2 configurations with two active links,

and 8 configurations with three active links.

For centralized decisions where each node knows the activities of the others, only

the configurations with three active links are feasible. If all these configurations were

regarded equally likely, there would be multiple configurations that maximize the

spatial reuse equally well. Hence which configuration to choose would not be unique

but random.

For distributed decisions where each node only knows the activities of its neigh-

bors, the patterns for two active links are also feasible. Which of the two patterns ap-

pears depends on which node decides to transmit first, which can be random. Hence,

logical configurations are random in general for both centralized and distributed de-

cisions.

An additional issue is how to find such an optimal configuration through fully

distributed node decisions with only local information. For example, if two links

(2, 3) and (7, 8) happen to be active, is it possible to result in a pattern of 3 active

links through distributed decisions? The answer is yes if the distributed algorithms

are randomized, i.e., nodes make probabilistic decisions for transmission. We shall

soon explain this in Section VI.

2.3.1.2 Configuration Hamiltonian

We now consider a general wireless network and develop a probabilistic model for

logical configuration σ assuming a given set of node positions X. σ is regarded as

a set of communication dipoles. Terminology “dipole” is originally used in a particle

system in statistical physics. There, a dipole corresponds to a particle with binary

2The contention requirement does not need to be satisfied at different time epochs, i.e., across
different rows.
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Figure 2: Possible configurations. “→”: Active link

states, active or inactive [63]. Now consider each “communication dipole” as a parti-

cle. Table I compares a wireless network with a particle system, demonstrating their

similarities.

Table 1: Correspondence between Dipole System and Lattice Gas

Dipole System Lattice Gas [63]

active(+1) / inactive(-1) occupied(+1) / empty(-1)
interference interaction energy
system potential energy chemical potential
logical configuration system state (e.g., either liquid or gas)

Configuration Hamiltonian has been applied to a particle system to describe the

states of a set of spins under the following conditions: (a) active particles are statis-

tically distinguishable, and (b) interactions between particles are weak.

We now extend the notion of configuration Hamiltonian to the wireless network,

where active communication dipoles are statistically distinguishable; and interactions
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among dipoles are weak due to decaying interference. We define a system energy

of a logical configuration as the summation of the received communication power at

individual receivers in the network, i.e.,

∑

ij

Pj ·
σij + 1

2
, (4)

where Pj denotes the net received-power at the receiver j by considering all interfer-

ences and noise. Based on the assumptions given in Section 2.2, for a single active

dipole σij = 1 in the network, the received power at the receiver Pj = Pil
−α
ij

σij+1

2
,

where Pi is the transmission power at transmitter i and lij = |Xi −Xj|. A dipole is

inactive, i.e., σij = −1 and Pj = 0, if node i does not transmit to node j.

Following the definitions in statistical physics [41], the “configuration Hamilto-

nian” of a dipole system is the negative system energy [51],

H(σ|X) = −
∑

ij

Pjηij + β
∑

ij

(SINRij − SINRth)
2ηij , (5)

where ηij =
σij+1

2
, SINRij =

Pil
−α
ij ηij

P

mn6=ij Pml
−α
mj ηmn+Nb

is the SINR for dipole σij , and β

is a positive constant. β(SINRij − SINRth)
2 serves as a penalty term for the SINR

constraint3, an equivalence of which is β[Pil
−α
ij ηij−SINRth(

∑

mn 6=ij Pml
−α
mj ηmn+Nbij )]

2.

For an active dipole σij = 1, the interference sources within a certain neighborhood

from the receiver j are considered as the significant interferers; and this neighborhood

is denoted by N I
ij as the interference range of node j. The Hamiltonian can be

rewritten as

H(σ|X) = R1(σ,X) +R2(σ,X) +R3(σ,X) +RI(σ,X), (6)

where R1(σ,X) =
∑

ij αij
ηij is the first-order energy of individual dipoles, R2(σ,X)

=
∑

ij

∑

mn ∈ NI
ij
α

ij,mn
ηijηmn is the second-order energy with products of two dipoles

3In the analysis and distributed algorithms, we relax this strict constraint with βU(SINRth −
SINRij) where U(x) = 1 for x > 0; 0, otherwise.
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within the interference range, R3(σ,X) =
∑

ij

∑

mn ∈ NI
ij

∑

uv ∈ {NI
ij , NI

mn}
α

ij,mn,uv
ηijηmnηuv

is the third-order energy with products of three dipoles within the interference range,

RI(σ,X) =
∑

ij RIij (σ,X) is the total interference outside the interference range

where RIij (σ,X) is the residual interference outside the interference range of an ac-

tive dipole σij = 1.

The coefficients for the link activities σ depend on relative node positions lij’s,

where

αij = −Pil−αij + β · (Pil−αij − SINRthNb)
2, (7)

αij,mn = 2
√

PiPml
−α

2
ij l

−α
2

mj − Pml
−α
mj + βSINR2

thP
2
ml

−2α
mj

−2β(Pil
−α
ij − SINRthNb) · SINRthPml

−α
mj ,

αij,mn,uv = −2
√

PmPul
−α

2
mj l

−α
2

uj + β(SINR2
thPmPul

−α
mj l

−α
uj ).

Intuitively, αij corresponds to the increased power when dipole σij becomes active,

αij,mn relates to the interference experienced by σij resulting from a neighboring ac-

tive dipole σmn, and αij,mn,uv relates to the interference experienced by σij from both

σmn and σuv.

2.3.2 Physical Configuration

Now consider node positions X . X is random where the randomness originates from

either perturbed or estimated node locations with measurement errors. One example

model for the noise/perturbation is a Gaussian distribution. For example, node po-

sitions can be characterized by a multi-variant Gaussian distribution P (X) with an

exponent
∑

i
(Xi−Xi0)2

2σ2 , where σ2 is the variance, and X0 = {Xi0} for 1 ≤ i ≤ N is a

set of desired positions.
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Management constraints are imposed on the physical connectivity. The 1-connectivity

is an example of a constraint to achieve the reachability of any source-destination pairs

in the network. That is, there exists at least one connected path between any two

nodes in the network. A sufficient condition of the 1-connected physical topology is

to construct a physical topology similar to the Yao graph, where each node has a

connected link with its nearest neighbors every θ (≤ 2π
3

) radian apart [103]. Such a

constraint can be represented as

h(Xi, Xj) =











0, | lij−lth
lth

| ≤ ǫ0,

|lij − Lij |, otherwise,
(8)

where ǫ0 is a small positive constant, Lij=|Xi0 −Xj0| is the desired distance 4 of lij ,

∀ (i, j). The resulting Hamiltonian for the physical topology is

H(X) =
∑

i

(Xi −Xi0)
2

2σ2
+ ζ

∑

i

∑

j∈Nθ
i

h(Xi, Xj), (9)

where N θ
i is the set of the nearest neighbors of node i for every θ radian, and ζ is a

positive weighting constant.

2.3.3 Network Configuration

We now consider a network configuration which consists of both a physical and a

logical configuration.

2.3.3.1 Network Configuration Hamiltonian

Combining the Hamiltonians for the physical and logical configurations results in an

overall configuration Hamiltonian of a wireless network,

H(σ,X) = ςσH(σ|X) + (1 − ςσ)H(X), (10)

where ςσ is a scaling constant, 0 ≤ ςσ ≤ 1, for the relative importance of these two

Hamiltonians [63][10].

4for example, Lij = lth for a positive constant lth > 0.
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Figure 3: Interference Neighborhood on A Linear Network

2.3.3.2 Gibbs Distribution

A configuration Hamiltonian can then be related to a probabilistic model through a

Gibbs distribution [63]. To be specific, in a particle system [41], the effective system

potential energy H(ω), known as the configuration Hamiltonian, obeys the Gibbs (or

Boltzmann) distribution [41], P (ω) = Z−1
0 · exp

(

−H(ω)
T

)

, where Z0 is a normalizing

constant and T is the temperature of the particle system [33][41].

MAC-layer model: For a logical configuration σ given node positions X, a

Gibbs distribution P (σ|X) can be obtained using configuration HamiltonianH(σ|X),

P (σ|X) = Z−1
σ · exp

(−H(σ|X)

T

)

, (11)

where Zσ =
∑

σ exp
(

−H(σ|X)
T

)

is a normalizing constant and also called the parti-

tion function [33]. T > 0 is the temperature in statistical physics that characterizes

the stability of the system5. The lower the temperature, the more stable the config-

uration is. T is used in [33] as a computational variable to obtain a most probable

configuration. We shall follow this application in Section 2.6.

Physical-layer model: Similarly, the Gibbs distribution of node positions

can be obtained as

P (X) = ZX
−1 · exp

(−H(X)

T

)

, (12)

5generally used in simulated annealing [10][33]
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where ZX=
∑

X exp
(

−H(X)
T

)

is a normalizing constant.

Cross-layer network model: The Gibbs distribution of an entire network

configuration can be obtained using the overall configuration Hamiltonian

P (σ,X) = Z0
−1 · exp

(−H(σ,X)

T

)

, (13)

where Z0=
∑

(σ,X)
exp

(

−H(σ,X)
T

)

is a normalizing constant.

2.3.3.3 Minimum Hamiltonian and Optimal Configuration

An optimal configuration is the one that maximizes the likelihood function,

(σ∗,X∗) = argmax
(σ,X)

P (σ,X), (14)

where H(σ,X) = − log [P (σ,X)] /T − log (Z0). Note that Z0 is a normalization

constant.

Note the system energy H(σ,X) incorporates both the randomness and the ex-

ternal management requirements. When the constraints are satisfied, the penalty

terms should be diminishing. Therefore, an optimal configuration should satisfy the

management objectives, i.e., spatial reuse, and the constraints.

2.4 Local Model: Cross-Layer Markov Random Field

We now seek a local model P l(σ,X) that is factorizable by a product of local-

ized probability density functions, and is a good approximation to the global model

P (σ,X). We resort to probabilistic graphical models for this examination.

2.4.1 Graphical Representation

Probabilistic graphical models relate a probability distribution with a dependency

graph of the corresponding random variables [33][53][55]. A node in the graph repre-

sents a random variable and a link between two nodes characterizes their statistical
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dependence. In particular, a set of random variables v forms Gibbs Random Field

(GRF) if it obeys a Gibbs distribution [63]. Hammersley-Clifford theorem shows an

equivalence between a probabilistic dependency graph and a Gibbs distribution; and

more importantly, when a Gibbs distribution has spatial Markov properties.

Hammersley-Clifford Theorem [63]: Let S be the set of nodes S = {1, · · · , N}.

Let v be a set of random variables v = {v1, · · · , vN}. v is said to be a Markov Ran-

dom Field if (i) P(v) > 0 for ∀ v in sample space; (ii) P (vi|vj for j ∈ S\{i}) =

P (vi|vj for j ∈ Ni). Ni is a set of neighboring nodes of node i for 1 ≤ i ≤ N .

Random field v is also said to be a Gibbs Random Field if its probability distribu-

tion can be written in the form P(v) =
∏

c∈C Vc(v), where c is a clique, C is the set

of all feasible cliques, and Vc(v) is a general positive function.
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Figure 4: Spatial Dependency Graph of Link Activities σ given a Set of Node
Positions X

Hammersley-Clifford Theorem asserts that v is a Markov Random Field if and

only if the probability distribution P(v) follows a Gibbs distribution. This theorem

shows an interesting type of probabilistic graphical models where a random variable

is conditionally independent of the others given its neighbors. In particular, when the
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neighborhood is much smaller than the size of a network, the conditional indepen-

dence implies an interesting type of spatial Markov dependence, i.e., a node depends

on its far neighbors through neighbors’ neighbors. Such a nested dependence can

be shown explicitly through local connectivities among nodes in a dependency graph.

The resulting probability distribution is thus factorizable in terms of local probability

distributions.

For illustration, consider a one-dimensional topology as in Figure 3. The corre-

sponding dependency graph for link activities σ given a set of node positions X is

shown in Figure 4. Nodes in the graph represent binary random variables σij ’s, and

the links represent their spatial dependence. For example, solid lines show the depen-

dence due to channel contention, and the dashed lines indicate the dependence due to

interference. The first and second rows of dipoles show bidirectional link-activities.

All communication dipoles are fully connected due to interference, and thus spa-

tially dependent. This spatial dependence can be represented with the Hamiltonian

in Eq.(6) that consists of the products of all pairs of dipoles. This fully connected de-

pendency graph shows an uninteresting case of random field where the neighborhood

of a node on the graph is the entire network. This implies that obtaining an optimal

configuration may require each node to exchange information with all the other nodes

in the network.

2.4.2 Approximation

How to obtain a meaningful approximation to the global model? The interference

outside the interference range, RI(σ,X), can be relatively small compared to the

first three terms of the configuration Hamiltonian in Eq.(6). The third-order term,

R3(σ,X), can be small also compared to the second-order term. Hence, if we use the
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first two terms to approximate the configuration Hamiltonian, we have

H l(σ|X) =
∑

ij

α
ij
(X)ηij +

∑

ij

∑

mn∈NI
ij

α
ij,mn

(X)ηijηmn, (15)

and the corresponding Gibbs distribution is

P l(σ|X) = Z−1
l · exp

(−H l(σ|X)

T

)

, (16)

where Zl is a normalization constant.

As the sum in Eq.(15) only involves neighboring dipoles which are within the inter-

ference range, the resulting dependency graph now has a small neighborhood (see the

thick dashed-lines in Figure 4). In fact this approximated Markov Random Field is

the well-known second-order Ising model [63] where the Hamiltonian H l(σ|X) con-

sists of both the first- and second-order terms of σij ’s. Such an approximation can

also be obtained directly from the probabilistic dependency graph of the global model.

That is, by removing all edges outside the interference range for each node, we can

obtain the graphical representation of the local model.

2.4.3 Spatial Dependence in Physical Topology

We now examine the spatial dependence of node positions X. In general, the random

field of node positions X may not be Markov and thus corresponds to a fully connected

graph. However, key management objectives often result in physical topologies with

spatial Markov dependence. For example, under the 1-connectivity constraint such

as in Eq.(8), node positions X correspond to a second-order Markov Random Field,

where the interactions are only with the first-order neighbors 6 that are θ radian

apart.
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Figure 5: Cross-Layer Coordination Graph and Clique of (σ, X). The Box: A
Clique of the Cross-Layer Graph

2.4.4 Cross-layer Markov Random Fields

The probabilistic graph of an overall configuration can be obtained by combining

two graphs for the logical and physical configuration. For the example network, a

cross-layer graph is shown in Figure 5 as an approximation of the original overall

configuration, where for the upper layer graph of the logical configuration, the local

interference is assumed among neighboring active dipoles. The lower-layer graph,

which is for the physical configuration, shows Markov dependence of node positions

due to the 1-connectivity constraint in Eq.(8). The entire graph is thus locally-

connected with the spatial Markov dependence at both layers.

This cross-layer graph corresponds to a coupled MRF [33], where both an Ising

model and a second-order MRF are combined together. The graph is also known as

a Random-Bond model [63], where dipoles are connected by random bonds which

depend on node positions. The cross-layer MRF (σ, X) can also be represented by a

6In this work, we assume those topology constraints result in spatial Markov node positions in
order to focus on the impact of interference. Non-Markov constraints will be studied in future work.
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chain graph [64] of two MRF blocks, one for X and the other for σ. The cross-layer

probabilistic graph thus maps the complex spatial dependence of a multi-hop wireless

network to an explicit graphical representation.

The corresponding likelihood function can then be represented as

P l(σ,X) ∝
∏

i,j

gij(σ,X), (17)

where gij(σ,X) is a local probability density function and can be represented as a

function of the sum of clique potentials:

gij(σ,X) =
∏

c∈Cij

exp

(−ψc(σ,X)

T

)

= exp

(

−∑c∈Cij
ψc(σ,X)

T

)

,

where Cij is the set of all cliques including node i, node j, and link (i, j); and ψc(σ,X)

is a clique potential function of a clique c.

As an example, consider a clique for nodes 3 and 4 as well as link (3, 4) shown in

Figure 5. The corresponding potential is a collection of related clique potentials, i.e.,

∑

c∈C34
ψc(σ,X) =

[

(X3−X3(0))2

2σ2 + ζ
∑

j∈{2,4} h(X3, Xj)
]

+
[

(X4−X4(0))2

2σ2 ζ
∑

j∈{3,5} h(X4, Xj)
]

+ α34 +
∑

mn∈σ
NI

34

(α34,mn + αmn,34)
σmn+1

2
, where σNI

34
= {σ12, σ21, σ23, σ32, σ43,

σ45, σ54, σ56, σ65} corresponds to the set of neighboring dipoles of σ34 within the in-

terference range.

The solid line connecting σ34 and σ45 indicates the spatial dependence due to the

channel contention. The dash line connecting σ34 with either X5 or X6 indicates the

dependence of dipole σ34 with positions (X5,X6) of a neighboring dipole σ56. In gen-

eral, a clique is determined by the interference range.
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2.5 Optimality and Complexity of Local Model

When is the local model a good approximation of the global model? In this sec-

tion, we derive near-optimality conditions for a good approximation. The conditions

can be obtained through the approximation error of a local model, communication

complexity, and their trade-offs.

2.5.1 Communication Complexity

The neighborhood size in a Markov Random Field determines the range of infor-

mation exchange of a node with its neighbors, and can thus be characterized as

communication complexity. The communication complexity of an active dipole can

be regarded as the maximum number of active dipoles within its interference range.

The number of active dipoles within the interference range is random. Hence we use

a deterministic bound for the number of active dipoles for ease of analysis.

Assume that an active dipole satisfies the SINR requirement, i.e., SINRij =

Pil
−α
ij

Nb+
P

mn6=ij Pml
−α
mj

σmn+1
2

≥ SINRth. Consider a circle centered at the receiver Xj of

an active dipole σij within which there cannot exist any active dipoles for the SINR

requirement to hold. The radius of the circle is the SINR contention range for node

j. Denote the minimum contention range for all active dipoles as rc which is the

minimum distance between any two active dipoles in the network. Only one dipole

can be active within a contention range. Now consider interference range outside

the contention range where multiple dipoles can be active concurrently, resulting in

interference. We now bound the interference region using a circular region of radius

rf . This includes a set of active dipoles outside rc but within rf as shown in Figure

6. Note that the actual interference range of a receiver is not symmetrical in all

directions but bounded by the circular region. This circular region is now considered

to be the relevant interference neighborhood for node j.

By packing the circular region with small circles of radius rc, we can obtain the
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maximum number of active dipoles in the interference neighborhood.

 

a 

b 

cr  

fr
 

 

Figure 6: Contention range rc and interference range rf of an active dipole

Definition 3. Communication Complexity C: The communication complexity of a

dipole σij is defined as the maximum number of active dipoles within the interference

range, i.e., C = (
rf
rc

)2, for 1 ≤ i, j ≤ N , i 6= j.

2.5.2 Near-Optimality Conditions

We now derive sufficient conditions for a local model to be a good approximation

of the global model. For feasibility of analysis, we consider a homogeneous network

specified below.

Theorem 1: Consider a network where N nodes are uniformly distributed, trans-

mit at the same power level (Pt > 0), have the same desired SINR threshold (SINRth)

and the same circular interference range (rf). The network also satisfies the 1-

connectivity, where | lij−lth
lth

| ≤ ǫ0 for every θ radian for i 6= j and 1 ≤ i, j ≤ N .

Let α be the power attenuation factor of the channel. The average approximation
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error can be bounded as E[∆] ≤ ǫ
∆
, where

ǫ∆ =



































































I
r2c

{

(2 + lnC)2 + 4π
lth

(rc +
√
Nlthrc)

}

, α = 2

I
r2c

{

2(2− 1
C
)2

r2c
+ 4π

l2
th

( 1√
C + ln(1 +

√

Nlth
Crc ))

}

, α = 4

I
r2c

{

2(α−2C
2−α

2 )2

(α−2)2rα−2
c

+ 4π

l
α
2
th

[

C 2−α
4 r

4−α
2

c + 2
4−α

(−(
√
Crc)

4−α
2 + (

√
Crc +

√
Nlthrc)

4−α
2 )
]}

, else;

with I = 2l
α
2
th/
(

l
−α
2
th −

√

l−αth /SINRth −Nb/Pt

)

.

The proof is given in Appendix A. Using the upper bound of the approximation

error ǫ
∆
, we can obtain a sufficient condition on the density of active dipoles so that

(σ̂, X̂) is near-optimal for a large network.

Theorem 2: Let ǫ be a desired performance bound. Assume N ≫ 1. We have

ǫ∆ ≤ ǫ if

rc ≥



















































a1N
1/3 + o(), α = 2

a2

√
lnN + o(), α = 4

a3N
4−α
4+α + o(), else,

where a1 =
(

4πI
ǫ
√
lth

)2/3

, a2 =
(

2πI
ǫl2

th

)1/2

, a3 =

(

4πI
ǫl

4+3α
2

th

)
4

4+α

, and o() represents a smaller

order term.

The proof can be obtained through simple algebraic manipulations from Theorem

1, and is thus omitted7.

7From Theorem 1, C is a function of rc; thus, C is replaced with r2

f/r2

c .
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2.5.3 Trade-Off between Near-Optimality and Complexity

Shown by the above theorems, four parameters impact the approximation error and

complexity: channel condition α, contention range rc, communication complexity C,

and network size N .

Channel, contention range and network size: First consider large interfer-

ence where the power attenuation factor α is small. This corresponds to such channel

environments as free space α = 2, obstructed areas in factories α ∈ {2 ∼ 3}, and

urban areas α ∈ {2.7 ∼ 3.5}. Theorem 2 shows that when α = 2, rc ≥ O( 3
√
N). This

implies that neighborhood size rf of a node is at least O( 3
√
N) also. Such a neighbor-

hood size suggests that a node needs to communicate with more and more neighbors

when the network size increases. Hence the local model has a large communication

complexity. Meanwhile, the maximum number of activated dipoles is O(N2/3), i.e.,

showing a sparsely activated network.

Figure 7 plots the upper bound of the approximation error and the communica-

tion complexity for SINRth = 20, Nb = 0.1, rc = 10, rf ∈ {20 ∼ 100}, N = 1000,

and α ∈ {2 ∼ 6}. Nodes are assumed to be uniformly distributed and the distance

between two neighboring nodes is chosen to be lth = 2 meter8. The large interference

corresponds to the flat region in Figure 7, where the SINR requirement is violated, and

the upper bound of approximation error ǫ∆ is truncated to remain flat for illustration.

Now consider small interference for a large α. This corresponds to such channel

environments as shadowed urban areas (α ∈ {3 ∼ 5}), and obstructed regions in

buildings (α ∈ {4 ∼ 6}) [81]. For 4 < α ≤ 6, rc ≥ a3 + o(). This implies that

the neighborhood size remains constant when N increases. Therefore, the Markov

8This corresponds to sensor networks for habitat monitoring, battlefield surveillance, and me-
chanical measurement and monitoring.
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Random Field has a meaningful small neighborhood and is an efficient approximation

to the global model. Meanwhile, the network has densely activated dipoles, i.e., the

number of active nodes can be O(N), showing a densely activated network.

The upper bound of the approximation error is now small, e.g., less than 10% for

α = 4 and below 1% for α = 6 as shown in Figure 7.

Trade-off: Figure 7 shows the trade-off between the approximation error and the

communication complexity, which is normalized, for α = 4, where a smaller C corre-

sponds to a larger approximation error. The intersection C and the approximation

error, e.g. between the two thick lines, corresponds to an optimal neighborhood with

C=16. This corresponds to 9 rf = 40 and rc = 10. In general, for a given rf , rc can

be adjusted to vary C so that a proper trade-off can be obtained. A wide range of 3

∼ 20 hops for rc would the most of the feasible scenarios.
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Figure 7: Trade-off between performance and complexity

9In general, an actual optimal value of rf depends on a constant that weights the relative impor-
tance of performance and complexity.
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Topology: For the uniform network assumed in the theorem, lth, the inter-

distance between two neighboring nodes, characterizes the physical topology. Theo-

rem 2 shows that rc increases with respect to l
1/3
th and lth for α = 2 and 2 < α ≤ 4,

respectively. This shows that the rate of growth of the contention range with respect

to the inter-node distance.

2.6 Distributed Algorithm for Self-Configuration

The significance of the local model (cross-layer Markov Random Field) is that it

allows a spectrum of distributed algorithms to be applied for self-configuration where

nodes make decisions using local information from neighbors.

2.6.1 Distributed Algorithm

A distributed algorithm obtains a near-optimal configuration by maximizing the ap-

proximated likelihood function

(σ̂, X̂) = argmax
(σ,X)

P l(σ,X). (18)

Due to the spatial Markov property, P l(σ,X) is factorizable over cliques. There-

fore, maximizing the entire likelihood function reduces to maximizing the localized

probability density functions at cliques, i.e., for 1 ≤ i, j ≤ N ,

(σ̂ij , X̂i) = arg max
(σij ,Xi)

P l(σij , Xi|XNi
, σNij

), (19)

where P l(σij, Xi|XNi
, σNij

) = gij(σ, X), XNi
and σNI

ij
are in the neighborhood of

node i and dipole σij . These localized probability density functions are composed of

the neighboring nodes and dipoles, and thus the configuration can be updated locally.

In addition, the local maximizations result in coupled equations due to the nested

Markov dependence among random variables of σ and X. This shows the need of

information exchange among neighbors.

Many algorithms can be used to maximize the localized probability density func-

tions, e.g., stochastic relaxation [10] and message passing [55]. Stochastic relaxation
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can avoid local minima [33], and is thus considered in this work. The algorithm has

been shown to converge to the global maximum of P l(σ,X), asymptotically with

probability one [33].

In particular, stochastic relaxation is applied for each node to make local decisions

on its new position and transmission activity. Let X̂i(t+ 1) and σ̂ij(t+ 1) denote the

new position that node i should move to and the activity of link (i, j) at time t+ 1,

respectively. The distributed stochastic algorithm for X̂i(t) and σ̂ij(t) for t ≥ 1 is

described as follows:

(a) Let XNi
be the set of neighboring random variables of Xi for 1 ≤ i ≤ N . Then

X̂i(t+1) = xi, with probability P l (Xi(t+ 1) = xi|XNi
(t)) = exp(−ψi(xi)/T (t+1))

P

∀xi
exp(−ψi(xi)/T (t+1))

,

where ψi(xi) = (xi−Xi0)2

2σ2 + ζ
∑

j∈Nθ
i
h(xi, Xj(t)).

(b) For σij , 1 ≤ i, j ≤ N and i 6= j, σ̂ij(t+ 1) = σij ,

with probability P l
(

σij(t+ 1) = σij |XNi
(t), σNij

(t)
)

=
exp(−ψij(σij )/T (t+1))

P

∀σij
exp(−ψij(σij )/T (t+1))

,

where ψij(σij) = (αij +
∑

mn∈NI
ij
(αij,mn + αmn,ij)

σmn(t)+1
2

)
σij+1

2
.

Temperature T is now used as a computational parameter, i.e., a cooling constant

in the algorithm. Let T (t) = T0/log(1+t) with T0=3 be the cooling scheduler [10][63].

This allows an almost-sure convergence to the global minimum Hamiltonian (see [33]

for more details).

2.6.2 Example

Consider an example how each node updates its position based on stochastic relax-

ation. An initial topology at t = 0 is given in Figure 8. At the first time epoch

(t = 1), node 1 has three neighbors N1 = {2, 3, 4}, where the neighborhood N1 is
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Figure 8: Stochastic relaxation for randomly positioned nodes

determined based on the definition of N θ
1 in Eq.(8). Node 1 then computes the condi-

tional probability given the neighbor positions, i.e., P (X1|X2, X3, X4). An estimated

new position of node i, i.e., X̂1, can be obtained as

X̂1(t = 1) = argmax
x1

P (X1 = x1|XN1 = xN1(0)), (20)

where XN1={X2, X3, X4} and xN1(0) = {x2(0), x3(0), x4(0)}; and “(0)” indicates t =

0.

Node 1 then sends its updated position information to the neighbors. This proce-

dure is applied to the rest of nodes and repeated until an equilibrium state is reached.

Link activities σij ’s can be updated similarly. Assume that a 1-connected topol-

ogy is already formed. Stochastic scheduler determines transmissions of nodes in time

so that the maximum spatial channel-reuse can be achieved. Meanwhile, the sched-

uler satisfies the constraints on fairness, 1-connectivity, and SINR [31] [15]. Such a

stochastic scheduling makes an efficient use of network resources especially for densely

populated wireless sensors/nodes.

Consider multiple time slots which result in a cycle [15]. At the k-th time slot of
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Figure 9: Initial Random Configuration: X0

a cycle (k ≥ 1), an optimal configuration corresponds to the one that maximizes the

spatial channel-reuse of unassigned links while satisfying the constraints. To maintain

a simple fairness criterion, the active links cannot access the shared channel again

until all their neighboring links have accessed the channel.

A time-slot is allocated only based on the spatial dependence among neighboring

nodes/links. Hence the stochastic scheduling warrants a distributed implementation.

For example, suppose (σ38, σ26) are two neighbors of σ14. Then the value of σ14 is

determined through the conditional probability, i.e.,

σ14 = arg max
{−1,1}

P (σ14|σ38, σ26). (21)

If the resulting σ14 = 1, the directional link (1, 4) gains the channel access.

2.6.3 Information Exchange

At time t, each node broadcasts its position and adjacent link status to the neighbors:

for a node i, (Xi(t), σij(t) = 1) if an adjacent link (i, j) is active; (Xi(t), ∅), otherwise.

Note that transmission powers are assumed to be fixed as Pt.

At time t+1, a node i uses such information received from neighbors, i.e., (Xm(t),
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(a) X

 

 

(b) σ given X

Figure 10: Self-configuration with localized algorithm

σmn(t) = 1) for m ∈ Ni, to update its own local configuration, which is both Xi(t+1)

and {σij(t+ 1)}. Here {σij(t+ 1)} denotes the set of adjacent links of node i. For a

node m that receives a message (Xi(t), σij(t)=1) from a neighboring node i, it relays

the message to its neighbors 10.

This bears a similar spirit to that for Bellman-Ford routing algorithm [59]. Hence

the near-optimal distributed algorithm uses geo-location information and link activ-

ities from neighbors. Note that neighbor positions can be also sensed at a node to

10From implementation standpoint, as the stochastic relaxation is robust, convergence may still
be guaranteed with delayed information from neighbors [10].
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Figure 11: Random failure of nodes, marked with stars

avoid information exchange among neighbors.

2.7 Self-Configuration: Example and Performance Evalu-

ation

The distributed algorithm is applied to self-configuration of multi-hop wireless net-

works: (a) 1-connectivity formation of physical topology; (b) scheduling for a logical

configuration; and (c) localized failure adaptation.

2.7.1 Simulation Setup

We select the following parameters in our simulation: network size N = 100, an initial

configuration (σ0=0, X0) as in Figure 9, the threshold of on inter-node distance

lth = 2 and θ = π
2

for the 1-connectivity of the physical topology, α = 4 for the

channel, and SINRth = 20.

We first obtain a physical topology to ensure the 1-connectivity. Each node up-

dates its position based on the iterative statistical local rules using information from

its neighbors, as given in Section 2.6.1. The iteration stops when a steady state is

reached, e.g., | |Xi−Xj |−lth
lth

| < 0.01 for ∀i and j ∈ N θ
i . Similarly, the logical config-

uration is obtained by the statistical local rules in Section 2.6.1 given the physical
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(a) Localized recovery of X

 

 

(b) Localized recovery of σ

Figure 12: Localized recovery from random node failures

configuration.

2.7.2 Example of Self-Configuration

Figure 9 shows a randomly generated initial configuration. Figure 10 (a) shows a

resulting physical topology that forms a 1-connected topology. The physical topology

remains fixed during the logical topology configuration. Figure 10 (b) illustrates the

resulting logical configuration of the 1-st time slot of a cycle.

48



www.manaraa.com

Now, consider some nodes fail in a stable network configuration such as in Fig-

ure 10 (b). Upon failures, the closest neighbors of failed nodes first get involved

in self-recovery by adjusting their positions and selecting other nodes for transmis-

sion. This may cause adjustments to the neighbors’ neighbors, resulting in cascad-

ing changes across the entire network. This means that small perturbations in the

network can cause incessant changes to the entire network configuration. Thus, lo-

calizing the random failure event is important. Additional penalty terms can be

introduced and added in the system potential energy, which serves as reconfiguration

costs: ξ · |(σ,X) − (σs,Xs)|, where (σs,Xs) denotes the steady-state network con-

figuration, and ξ is a positive weighting constant that characterizes the cost of change

in node positions and/or link activities. Such a constraint would localize the change.

Figure 11 shows a random failure event of wireless nodes. Failed nodes are marked

with stars. Localized recovery of the physical topology is shown in Figure 12 (a). The

nodes outside the arc are not affected by failures; whereas, the resulting configuration

is not globally optimal any more. In a similar way, the failed logical topology can be

locally recovered, and shown in Figure 12 (b).

2.7.3 Performance Evaluation

We now study the performance, communication complexity and their trade-offs in the

simulation setting described in Section 2.7.1. This differs from the analysis in Section

2.5 that is based on uniform topology, provides upper-bounds, and is implemented

with ideal distributed management.

Global and Local Model for the Spatial Dependence Representation:

Figure 13 shows the one-hop capacity, which is achieved based on the global and local

model. As a comparison, we also consider the one-hop capacity that is achieved by the
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Figure 13: One-hop Capacity Comparison: Global, Local, and Protocol Model

protocol (contention) model [31][38][66]. All of these considered algorithms perform in

a fully distributed way (i.e., each node makes asynchronous and independent decisions

except local information exchange with neighbors).

For this comparison, we consider a wireless network, where total 50 nodes are

randomly and uniformly positioned. The interference range of the global model is not

limited and covers the entire network; whereas, that of the local model is assumed

to be rf=4. For the protocol model, an active link prohibits the other links from

accessing the shared channel within a circular range, referred to as the separation

range and denoted with rs. Note that the separation range rs is related only to the

protocol model, and both the global and local models are independent of rs.

We consider the range of rs ∈ {1, 7}. Figure 13 shows that for a large separation

range rs, the protocol model fails to maximize the spatial channel-reuse. This is

because the contention constraint is more harsh than needed. For a small separation

range, the protocol model over-utilizes the channel resource, and thus some active

links violate the SINR constraint. The net spatial-reuse is decreasing accordingly.
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Even with the most optimal separation range (i.e., rs=3), the spatial-reuse of the

protocol model is less than that of the local model by 23%. This is because the

protocol model cannot consider the non-circular separation of active links (i.e., too

simplified neighborhood system of dipoles, defined with a unit circle model). On the

contrary, the global and local models consider the non-circular contention of active

links and represent the neighborhood system of dipoles more accurately. The spatial-

reuse of local model is lower than that of global model by 8% on average. This shows

the trade-offed performance for the sake of simplified complexity.
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Figure 14: Communication complexity C v.s total number of nodes N . P and P l

are the global and local model, respectively.

Complexity: We perform 10 independent runs with randomly generated ini-

tial physical and logical configurations and the same set of parameters. Figure 14

shows the communication complexity for both the global and local model in terms

of network size N . The communication complexity C is obtained by counting and

averaging the number of the neighboring active links within the interference range of

each active dipole. The results are averaged from 10 experiments with random initial
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conditions. α = 4 is assumed in the simulations. The communication complexity of

the centralized global optimization increases linearly with N since each node needs

the information on all the others in the network. The complexity, however, remains

bounded for the distributed management as N increases.
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(a) Achieved SINR
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(b) One-hop capacity

Figure 15: Performance: One-hop Capacity and SINR, where P l and P are the
Local and Global Model, Respectively.
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(c) Upper bound of one-hop capacity

Figure 16: Upper-bound of One-hop Capacity, where P l is the Local Model.

Spatial-Reuse and SINR: We study further the performance of the dis-

tributed algorithm in achieving the SINR requirement and the spatial-reuse maxi-

mization.

Figure 15 and 16 show the SINR and the one-hop capacity of the global and local

models. The one-hop capacity is measured as the total number of concurrent active

dipoles that satisfy the SINR requirements at a time instance [62]. Figure 15 (a) shows

that given the neighborhood size of the local model, when the interference decays suf-

ficiently fast, e.g., α = 4, the distributed algorithm achieves the SINR requirement.

However, in case the interference decays slowly, e.g., α = 2, for the same interfer-

ence range rf , the local model communicates with too few neighbors by ignoring the

accumulative interference from far-away nodes, and thus fail to satisfy the SINR re-

quirement. Therefore, depending on the channel condition, a local model may need a

larger neighborhood system to account for interference outside the interference range.

Figure 15 (b) shows the one-hop capacity as a function of N . For α = 4, the

resulting logical configuration is near-optimal, where active dipoles are separated

53



www.manaraa.com

at least rc distance apart. The corresponding one-hop capacity is O(
(

lth(1+ǫ0)
rc

)2

N)

resulting from the 1-connected physical topology. The distributed algorithm thus

achieves the one-hop capacity at rate O(N), which is the same as that of centralized

schemes [38][62] 11.

Furthermore, Figure 16 shows that as SINRth increases, the spacing rc between

active dipoles increases, and thus the one-hop capacity decreases accordingly.

2.8 Conclusion

In this work, we have developed an analytical framework in which the optimality,

approximation and distributed randomized algorithms can be studied for self- config-

uration. Our findings are as follows.

(a) We have studied the optimality of a network configuration through modeling.

We begin with a global model that characterizes the ground truth in regard to as-

sumptions of networks. The ground truth includes internal network characteristics

on a wireless channel, a random physical and logical configuration, node decisions,

and external management constraints. The model is a Gibbs distribution where the

exponent can be regarded as a cost function. This relates the modeling with opti-

mization.

The global probabilistic model characterizes the spatial dependence of node posi-

tions and link activities with management constraints.

(b) The complex spatial dependence of the global model can be represented ex-

plicitly by a probabilistic graph. The graph provides an approximation, i.e., a local

model which is a cross-layer Markov Random Field (MRF) or a random bond model.

The near-optimality of a local model is defined when the local model differs from the

global model within a given error bound. The complexity of the local model is the

11In fact the figure shows that the local model results in a “larger capacity” than the global model
due to incorrectly activating more dipoles than SINRth can tolerate.
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communication range of nodes from localized neighborhoods in the Markov Random

Field.

(c) Near-optimality conditions for such an approximation are derived under differ-

ent channel conditions, density of nodes, network size and management requirements.

The optimality condition is coupled with the communication complexity which is the

total number of interference neighbors in distributed self-configuration. We show that

a trade-off exists between the optimality and complexity for the distributed configu-

ration management and depends on different network conditions. Specifically, when

the channel has a slow power attenuation of order 2 < α < 4, the spacing between

any two active links (and the communication complexity, i.e., neighborhood system of

the local model) should grow at a rate of O(N
4−α
4+α ) with the total number of nodes N

in the network. On the contrary, when the channel has a rapid power attenuation of

α > 4, the spacing between any two active links (and the communication complexity,

i.e., neighborhood system) converges to a constant at a rate of O(N
4−α

4 ).

(d) We apply the randomized distributed algorithms using the local model. This

results in probabilistic inference based on stochastic relaxation. The algorithm allows

each node to decide its local configuration using only information from neighbors.

Local self-configuration collectively achieves a near-optimal global configuration.

(e) We have shown an example of stochastic scheduling and reconfiguration upon

failures. We have shown that the distributed algorithm achieves a near-optimal con-

figuration at a bounded communication complexity (i.e., bounded neighborhood sys-

tem); whereas, the optimal centralized approaches suffer from a large communication

complexity which grows linearly with the network size. A disadvantage of such an

algorithm is the slow convergence resulting from stochastic relaxation. Other algo-

rithms such as message passing can be used to exploit a faster convergence at the

cost of optimality.

55



www.manaraa.com

From a modeling standpoint, different from top-down approaches which learn a

model externally only, we have taken a bottoms-up approach that maps not only

external constraints but also network characteristics to a probabilistic model and a

dependency graph. As a result, the near-optimality conditions of the local model can

be studied through both the internal network properties and external management

constraints. One disadvantage of such an approach is that we use simple assumptions

which limit the model. Nevertheless, the cross-layer Markov Random Field provides

insights on what architecture (neighborhood system) and algorithms can be used for

the distributed configuration management of wireless networks. We envision that such

a local model can be extended to include more complex and heterogeneous networks.

This would constitute some of the future directions.
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CHAPTER III

MY PREVIOUS WORKS: ON THE COMPLEXITY

UPPER BOUND OF THE CONNECTION PREEMPTION

PROBLEM IN A MULTI-CLASS NETWORK

3.1 Introduction

The1 connection preemption problem is well-studied in the multi-protocol label switched

(MPLS) networks [93] [2]. On a given route, there will be multiple traffic flows be-

tween source and destination. There may be multiple applications and each flow

then corresponds to a different connection, e.g., a low-priority file transfer or a high-

priority interactive application. In an MPLS network, the flows are kept separate

by establishing different label switched paths (LSPs) between the same source and

destination.

A new important connection or flow with a high priority may cause existing con-

nections or flows2 to be preempted. In other words, resources currently in use by one

or more existing connections will be allocated to the new connection. The decision on

which connections to preempt for the new connection is known in the literature as the

connection preemption problem [32] [47] [77] [45]. This decision relies on a priority

scheme, which is defined by the preemption priority policy. This policy is one of the

resource allocation policies used in MPLS networks. The overall goal of the resource

allocation policies is to re-allocate network resources in a more efficient way.

The priority scheme can adopt strict or soft (preemption) priority orders. With

1This work is done with Dr. Randal T. Abler and Dr. Ana E. Goulart.
2Throughout this paper, the words “connection” and “flow” are used interchangeably.
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soft preemption priority orders, a new connection of priority k can preempt a flow

with priority j instead of a flow with a lower priority i, where i < j < k. In this work,

a higher priority is always denoted with a larger value. On the other hand, with strict

priority orders a new connection always preempts the lowest priority flows first.

In this work, we propose to derive an upper bound of the computation complexity

of the connection preemption problem in the prioritized multi-class networks. The

derived upper bound provides a guideline about the computational complexity of the

connection preemption problem. The preemption problems with both strict and soft

(preemption) priority orders are considered.

Table 2: Notations on the Preempting Route

preemptable flow flow with a priority lower than cnew.
N ck
ni,ni+1

number of flows of class k at link (ni,ni+1).

Nni,ni+1
number of flows at link (ni,ni+1),

where Nni,ni+1
=
∑cnew−1

j=1 N ck
ni,ni+1

.

N ck number of flows of class k, N ck =
∑

i=1N
ck
ni,ni+1

.

N ck
set number of feasible combinations of flows of class k.

Although there are many connection preemption algorithms in the literature, the

optimality and the complexity upper bound of preemption problem have not been

studied in depth yet. For example, Garay and Gopal [32] show that the connection

preemption problem is NP-complete, and they present a set of heuristic and central-

ized preemption algorithms. Peyravian and Kshemkalyani [77] propose two practical

algorithms in a decentralized fashion. The problem is better formulated by articulat-

ing the decision variables (i.e., the preemption factors): (i) the priority of each flow;

(ii) the bandwidth to be preempted; and (iii) the number of flows to be preempted.

However, their algorithms are optimal only at the hop level because they do not con-

sider the flows on the other hops.
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Additionally, Oliveira [45] represents the connection preemption problem with

linear programming and proposes a corresponding adaptive heuristic algorithm. By

using the adaptive preemption algorithm, the lower-priority flows can have a chance

of minimizing its active bandwidth before being preempted. Anjali [2] formulates the

preemption problem in the MPLS networks with a Markov decision process (MDP).

Random decisions aimed to reduce the decision time on a preemption problem are

proposed in [90]. Other algorithms have been proposed such as a centralized algo-

rithm in [99] and genetic algorithms in [16]. Routing algorithms with knowledge of

the preemption problems are considered in [105].

Most of these existing algorithms are very practical but are heuristic in nature.

In order to study the optimality and the complexity upper bound of preemption

problem, in this work we propose to model the connection preemption problem as

a virtual network topology and consider the preemption problem in the domain of

a routing problem. That is, we first propose to represent the preemption problem

with a graph (i.e., a virtual topology), in which a node represents a feasible set of

the lower-priority flows and a link represents the set of common flows between two

adjacent nodes. Each feasible route in the virtual topology will represent a feasible

set of flows to be preempted, and the least-cost route can be found with a least-cost

routing algorithm [59]. From the complexity of the routing problem, we can obtain

that of the preemption problem.

Moreover, we consider the preemption problems with both strict and soft (pre-

emption) priority orders. With soft preemption orders, the preemption problem of

multiple service classes cannot be segmented. Thus, the flows of multiple service

classes, whose priority order is lower than that of a new connection, are to be con-

sidered at the same time. The corresponding graph of the preemption problem with

soft preemption orders is called the “multi-layer virtual topology.” The computational
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complexity is too high to be of any practical use.

However, with strict priority orders, the preemption problem in a multi-class net-

work can be segmented with multiple preemption problems of different priorities. The

corresponding virtual topology of each priority is relatively simple.

By constructing (multi-layer) virtual topology, we can derive the computational

complexity of both soft- and hard-ordered preemption problems. The routing com-

plexity in the corresponding virtual topology provides a guideline about the upper

bound of the computational complexity of the connection preemption problem and

the lower bound on the performance.

3.2 Graphical Representation of the Connection Preemp-

tion Problem

In this section, we show how to represent the preemption problem with a graph. The

key idea is to modify the line topology of the preempting route with a mesh flow

graph.

The “preempting route” in this work refers to the route for a new connection.

For simplicity reasons, we exclude the routing issues from the problem scope. Thus,

we assume that the preempting route has already been pre-determined by a proper

routing algorithm [32] [77].

We consider a network with multiple service classes and assume that a new flow

belongs to class cnew and demands an explicit bandwidth bnew. Assuming strict pri-

ority orders, a preemptable flow is a flow with a priority lower than cnew.

3.2.1 Virtual Topology for Two Service Classes

We first consider a network with only two classes, i.e., class 2 ≫ class 1. The unused

bandwidth is assumed to be occupied by the virtual traffic of class 0. Let a new flow

belong to class 2 (i.e., cnew = 2) with an explicit bandwidth demand (i.e., bnew > 0),
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(a) A preempting route with two flows, where bnew < B1, B2
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(b) Virtual topology

Figure 17: Preempting route and the corresponding virtual topology

and let the preempting route r1 consist of m+1 nodes (i.e., n0,· · · ,nm). Figure 17 (a)

illustrates the case of flows in route r1, which has four nodes (i.e., m=3). The flows

have two different classes: class 1 and 2. Considering that the new flow belongs to

class 2 (i.e., cnew = 2), the preemptable flow is the flow with a priority lower than cnew.

For convenience, some important terminologies are defined in Table 2. For in-

stance, for class 1, the number of flows at link (ni, ni+1) is N c1
ni,ni+1

, and the number

of flows on the preempting route r1 is N c1 . The number of all possible combinations

of flows on r1 is N c1
Set (from binomial equation, N c1

Set ≤ 2N
c1 ). For example, consider
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Table 3: Notations for the Link Cost of Virtual Topology

ij node nij on the virtual topology.
(ij, xy) link (nij , nxy).
Lij,xy link cost of link (ij, xy).
SF I

ij Feasible combination of preemptable flows,
which is shard by all nodes on the i-th row (i.e., nij for 1 ≤ j ≤ m).

SFR
ij Set of all preemptable flows at link (nj−1,nj)

for 1 ≤ j ≤ m on the line graph.

N I
ij number of flows in the set SFIij .

BI
ij total bandwidth of flows in the set SFIij .

Fresh-flows at (ij, xy) flows in SFIij, but not in SFIxy.

NF
ij,xy number of Fresh-flows at link (ij, xy).

BF
ij,xy total bandwidth of Fresh-flows at link (ij, xy).

Figure 17. Then, the number of flows of class 1 at each link is N c1
n0,n1

=2, N c1
n1,n2

=1,

N c1
n2,n3

=1. The number of flows of any class at each link is Nn0,n1=2, Nn1,n2=1,

Nn2,n3=1. Total number of flows of class 1 on the linear topology is N c1=2. Total

number of feasible combinations of flows of class 1 is N c1
set=3.

Since the highest preempted class (hpc) at a link is either 0 or 1, the preemption

problem is now to decide which flows of class 1 to preempt on the preempting route.

This preemption problem is defined over a line topology r1. In order to consider all

possible combinations of the preemptable flows at each hop of r1, the line graph of

r1 is extended to a mesh graph, which is composed of nodes nij , 1 ≤ i ≤ N c1
Set and

1 ≤ j ≤ m.

3.2.1.1 Building the virtual topology

To construct the mesh graph, each node nj of the preempting route r1, for 1 ≤ j ≤ m

(except node n0), is duplicated N c1
Set times. We denote n0 with n1,0 instead. And a

new node, denoted with n1,m+1, is attached at the end of the mesh topology. The

resulting mesh graph is called “virtual topology.” Figure 17 (b) shows the resulting
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virtual topology of the linear topology of Figure 17 (a). For two classes, N c1
set=3, thus

the linear graph of r1 is extended to the mesh graph composed of 3 nodes for node

n1, n2 and n3, with an extra node at the end n4.

The nodes {nij} on the ith row in the virtual topology, for 1 ≤ j ≤ m, share the

same information of a feasible combination of preemptable flows on r1. This shared

information is called the imaginary set of flows (SF) to be preempted, and denoted

with SFIij for node nij .

For example, in Figure 17 (b), SFIij is {f1}, {f2}, or {f1, f2}, where fi denotes flow

i. The SFIij may include the flows that actually do not traverse the link (nj−1,nj) of

the preempting route r1. The set of flows that actually traverse the link (nj−1, nj)

and belong to SFIij is called the real set of flows to be preempted and denoted with SFRij .

Note that for a link (nij, nxy) on the virtual topology, in case SFRxy 6⊂ SFIxy such

as the link (n11, n12) in Figure 17 (b), the cost of this link is considered ∞. These

links whose link cost is ∞ are not considered in the routing, which helps reduce the

computational complexity.

Since all possible sets of preemptable flows at each hop are represented with the

nodes of the virtual topology, each feasible route on the virtual topology corresponds

to a feasible set of preemptable flows on r1. Therefore, with a proper routing algo-

rithm, the most efficient route can be obtained, which provides the most optimal set

of flows to be preempted.

3.2.1.2 Assigning Costs

To complete the virtual topology, let us take a closer look on how to define the

cost of each link. The link cost of a link is composed of a vector of two elements, i.e.,

BF
ij,xy and NF

ij,xy (refer Table 3). For a link (nij, nxy) in Figure 17 (b), the link cost
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corresponds to the cost of preempting the set of flows, i.e., { SFIxy − SFIij }= the set

of Fresh-flows at link (ij, xy).

The cost of link (ij, xy) is denoted with Lij,xy, which is

Lij,xy =



















































(0, 0), if j = m, x = 1, y = m+ 1

(∞,∞), if |j − y| > 2 or y ≤ j

(∞,∞), if BI
ij ≤ bnew

(∞,∞), if {SFIij , SFRxy}6⊂SFIxy

(BF
ij,xy ,NF

ij,xy), otherwise,

(22)

where m is the total number of links on the line graph, 1 ≤ i, x ≤ N c1
Set, 1 ≤ j ≤ m−1,

1 ≤ y ≤ m, and SFIn0
= φ.

The corresponding link cost of a virtual topology can be observed in Figure 17 (b).

Consider the first condition in Eq.(22), which is Lij,xy = (0, 0) for j = m and

y = m + 1. The value m indicates the total number of links on the line graph (e.g.,

in Figure 17 (a), m=3). A link (j − 1, j) of the line graph for 1 ≤ j ≤ m = 3

is represented with nodes nij for 1 ≤ i ≤ 3 in Figure 17 (b). Thus, all links are

considered with nij for j ≤ m = 3 in Figure 17 (b), and the last node nm+1=n4 is

used for notational convenience only to denote the destination. Thus, Lix,xy = (0, 0)

for j = m and y = m+ 1 for a linear topology with m links.

Consider the second condition in Eq.(22), which is Lij,xy = (∞,∞) for |j− y| > 2

or y ≤ j. For |j−y| > 2, if Lij,xy < (∞,∞), the preemption cost on the intermediate

links between (j − 1, j) and (y − 1, y) would be skipped. To consider the preemption

costs of all links on the line graph, we define Lij,xy = (∞,∞) for |j − y| > 2. We

preempt the flows from link (ni, ni+1) to (ni+1, ni+2) for 0 ≤ i ≤ m−1 in the increasing

order. If we allow a path between node nij and nxy on the mesh graph for y ≤ j,

there would be a loop on the preemption decisions.

Consider the third condition in Eq.(22), which is Lij,xy = (∞,∞) for BI
ij < bnew.
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This condition implies that the total bandwidth of preemptable flows in set SF I
ij is

less than the required demand of new flow (i.e., bnew).

Consider the forth condition in Eq.(22), which is Lij,xy = (∞,∞) for {SF I
ij, SF

R
xy}

6⊂ SF I
xy. This condition implies that the considering feasible configuration of preempt-

able flows on the i-th row, i.e., SF I
ij , includes the flows that neither exist at node nij

in the mesh graph (i.e., at link (nj−1, nj) on the line graph), nor are preempted at

the previous links. For example, the case of the link (n11, n12) in Figure 17 (b), Lij,xy
= ∞.

Consider the fifth condition in Eq.(22), which is Lij,xy = (Bij,xy, Nij,xy). The cost

of Bij,xy and Nij,xy denotes the total bandwidth and total number of preemptable

flows in a set SF I
xy \ SF I

ij . The set SF I
xy \ SF I

ij denotes a set of preemptable flows

that exist at the x-th row but not at the i-th row.

The vector link cost can be converted into a scalar link cost, which depends on

the preemption policy. That is,

Lij,xy = αBB
F
ij,xy + αNN

F
ij,xy, (23)

where αB > 0 and αN > 0. In case a preemption policy declares that the priority of

decision variable Bi is higher than that of Ni for ∀i (i.e., αB >> αN), we first select

the least cost path only with the link cost of BF
ij,xy. If there are more than one path

with the same least cost, among the resulting least cost paths, we do another path

selection with only the link cost NF
ij,xy. For the other policies, the least cost path also

can be found in a similar way.

Over the final least-cost path, the collection of the information SFIij from each

node provides the information of which flows to preempt on r1.
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3.2.2 Validation of the Proposed Method

The flows on ri (the preempting route of the class i) can be classified into three types.

The flows that share only a single link with ri are referred to as type 1 flows, the flows

that share more than two consequent links with ri are referred to as type 2 flows,

and the flows that share more than two links inconsequently with ri are referred to

as type 3 flows.

If all flows on ri (i.e., the preempting route of class i) share only a single link

with ri, the preemption decision can be done at each hop independently. However,

if some flows on ri share more than one link with ri (i.e., either type 2 or 3 flows

exist), the decision on which flows to preempt at a link may be dependent on that of

the other links. This dependence may cause the so-called “merged route problem” to

the proposed virtual topology method. The merged route problem is defined that at

least two feasible paths share a link with different link costs in the virtual topology.

Figure 17 shows an example of the merged route problem. In the figure, the routes

n11-n22-n13, n21-n22-n13, and n11-n32-n13 are referred to as path 1, path 2 and path

3, respectively. For path 1, since the cost of preempting the flow f1 at node n11 is

already counted at a previous hop, the link cost L22,13 should not include the cost of

preempting the flow f1. Thus, L22,13 is null for path 1. However, for path 2, the flow

f1 is not preempted at any previous hop, so the link cost L22,13 of path 2 should be

B1. Path 1 and 2 require a different link cost at the shared link, which causes the

merged route problem.

The path that revisits the same row (of a virtual topology) that it has previously

visited is called a returning path, e.g., path 1 in Figure 17 (b). For the merged route

problem, the virtual topology method ignores the link cost of the returning paths,

represented in Equation (22). For example, L22,13 = (B1, 1) in Figure 17.
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The ignorance of the returning path is actually compensated. That is, since there

is always a node containing the information of the preempted flows at the current hop

and the previous hops (e.g., n32 in Figure 17 (b)), there is always an alternative route

that acts for the ignored returning path. The path 3 in Figure 17 is a compensating

route for the returning path 1 in this example.

Thus, the cost of all paths can be considered with the proposed method.
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Figure 18: Preempting route with four flows, where bnew < B1
1 , B

1
2 , B

2
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3.2.3 Computational Complexity

Since we have converted the preemption problem into the least cost path selection

problem on the virtual topology, we derive the complexity of the preemption problem

from that of the routing problem. First, note that most nodes in the virtual topology

are isolated and without any adjacent links. Thus, the number of nodes that are

used in the routing decision is O(N c1
set · m), where m is the number of hops on the

preempting route r1, and N c1
set is total number of feasible combinations of flows of

class 1. The complexity of constructing the virtual topology of class c1 is in the order

of number of links, which is O((N c1
set)

2 ·m).

In case of using the Dijkstra’s shortest-path first algorithm, the complexity of the

least cost path selection on the virtual topology is O((N c1
set · m)2). Therefore, the
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Figure 19: Corresponding multi-layer virtual topology of the preempting route

overall complexity (CC) is

CC = O((N c1
set)

2m+ (N c1
set)

2m2) (24)

= O((N c1
set)

2m2)

= O(22N
c1
hopm2),

where N c1
hop = max{N c1

ni,ni+1
} for 0 ≤ i ≤ m− 1.
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For comparison, we consider the complexity of the distributed decision with ex-

haustive searching, which compares all feasible subsets of active flows. Note that at

a link (i, i + 1) over a preempting route, with distributed preemption decision, the

complexity is O(2N
c1
ni,ni+1 ). Thus, the total complexity on the preempting route results

in O(m · 2N
c1
hop).

Similarly, with the optimal centralized decision with exhaustive searching, the

complexity is O(2N
c1 ·m · (N c1)2), where 2N

c1 denotes total number of feasible com-

binations of the preemptable flows on the preempting route. For a set of flows to be

preempted, whose size is bounded by N c1, this set needs to be compared with the

set of active flows at each hop over the preempting route r1. At a hop over the route

r1, the common flows between this set of flows to be preempted and the set of active

flows at the hop correspond to the net flows to be preempted at the hop. The set of

these common flows is used to check if the set of preemptable flows can satisfy the

requirement of a new flow at each hop over r1. The complexity of this comparison is

bounded by (N c1)2 at each hop.

With the proposed method, the complexity is increased by the order of O(2N
c1
hop ·m)

compared to that of the distributed decision; however, it can be reduced by the order

of O(2N
c1−2N

c1
hop · (N c1)2 · 1

m
) compared to that of the exhaustive centralized decision.

3.3 Connection preemption Problem with Multiple Service

Classes

In this section, we study if the case of multiple service classes can be represented with

multiple independent preemption problems of two service classes. We consider the

multi-class networks with both hard- and soft-priority orders.
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3.3.1 Non-Hardly Ordered Multi-class Networks

For the preemption problem at the softly-order multi-class networks, multiple service

classes need to be considered concurrently, which causes additional complexity. For

example, Figure 18 shows a preempting route with three service classes for cnew = 3.

On the preempting route in Figure 18, f ji denotes a flow i of class j and Bj
i is the

bandwidth of the flow f ji for i, j ∈ {1, 2}.

We represent the active flows of multiple service classes on a linear graph with a

multi-layer virtual topology, such as in Figure 19.

The virtual topology includes the flows of class 1,· · · ,cnew − 1, thus the resulting

computational complexity CC
′
is

CC
′

= O(22
Pcnew−1

k=1 N
ck
hopm2) (25)

= O(22cnewN
′

hopm2),

where N ck
hop = max {N ck

ni,ni+1
for 0 ≤ i ≤ m − 1}3, and N

′

hop = max {N ck
hop for ck ≤

cnew − 1}. The computational complexity is exponential to the total number of flows

in the network.

3.3.2 Hardly Ordered Multi-class Networks

In the hardly prioritized multi-class networks, a flow of priority j receives better ser-

vice than a flow of priority i in all cases, for i < j. Thus, no active flow of class j at a

link will be preempted if there are any active flows of class i at the link, for i < j. Let

hpcl denote the highest class of the preempted classes at a link l, where hpcl < cnew.

Thus, we only need to decide which flows of class hpcl to preempt at the link l.

Consider a preempting route with z hops, in which the highest preempted class on

3m is total number of hops on the preempting route.
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the route is denoted with hpc (i.e., hpc = max {hpc1, hpc2, · · · , hpcz}). The preemp-

tion decision on class hpc can be done by putting the hops, whose highest preempted

class is hpc, together side by side, where 1 ≤ hpc < cnew. This results in a line topol-

ogy whose highest preempted class is hpc, which is denoted with a route rhpc. Now,

the preemption decision on rhpc can be done as if there are only two service classes,

a preempting class cnew and the other preempted class hpc, such as in Section 3.2.1.

For example, consider again the preempting route with three service classes in

Figure 18. With strict (preemption) priority orders, the highest preempted class at

each link of the preempting route is hpc1=1, hpc2=1, and hpc3=1 respectively. As a

result, we only need to consider rhpc=r1, which is equal to the preempting route in

Figure 17 (a). The multi-layer virtual topology in Figure 19 is also reduced into the

virtual topology in Figure 17 (b).

To cover the “virtual topology” of class 1 to cnew−1 over the preempting route, a

hierarchical virtual topology that is composed of total cnew−1 “virtual topologies” will

be constructed over the preempting route for the service classes 1 ≤ i ≤ cnew. With

the hardly-ordered priorities, multiple service classes can be considered as multiple

independent preemption problems of two service cases. However, are these multiple

preemption problems mutually independent? The answer is “NO.”

Parallel/Sequential Computation of ri’s in Hardly Prioritized Networks :

In a network with total NC service classes, the parallel computation for each ri is

generally infeasible. This is because the decision on ri depends on the other higher-

priority line-topology rj for j > i.

Lemma 1. For two links i and j on the preempting route, the highest preempted
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class at link i, denoted with hpci, depends on that at link j, denoted with hpcj, for

hpci < hpcj.

The proof can be found in Appendix B.
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Figure 20: Dependence on Neighboring Links

As a result, for an optimal decision, the preemption decision needs to be done

sequentially from rcnew−1 to r1. Depending on the decision at ri, for j < i, rj ’s need

to be re-constructed according to ∆l of each link l on the preempting route. Thus, it

is infeasible to make a parallel computation of ri’s at the same time, for 1 ≤ i ≤ cnew−1.

The resulting overall computational complexity (CC
′′
) is

CC
′′

= O(

cnew−1
∑

k=1

22N
ck
hopm2) (26)

= O(cnew · 22N
′

hopm2),

where N
′

hop = max {N ck
hop}.
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3.4 Conclusions

This work provides an upper bound of the computational complexity of optimal con-

nection preemption decision in the prioritized multi-class networks. We have con-

sidered both hardly and non-hardly (i.e. softly) prioritized multi-class networks. In

the hardly prioritized multi-class networks, a flow of priority j receives better service

than a flow of priority i in any case, for i < j.

In the hardly ordered multi-class networks, an upper-bound of computational

complexity of the preemption problem is O(cnew ·22N
′

hopm2), where N
′

hop = max{N ck
hop},

N ck
hop = max{N ck

i,i+1} for 0 ≤ i ≤ m− 1, and N ck
i,i+1 is the number of flows of class k at

link (i, i+ 1) on the preempting route.

In the non-hardly ordered multi-class networks, an upper-bound isO(22cnewN
′

hopm2).

The result shows that with the hard-priority orders, the computational complexity

can be significantly lowered.

Moreover, with the proposed decision algorithm, in the hardly prioritized multi-

class networks, for a class k (or class ck), the computational complexity of preemption

problem can be reduced from O(2N
ckm(N ck)2) of the exhaustive optimal centralized

decision to O(22N
ck
hopm2).
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CHAPTER IV

DISTRIBUTED MANAGEMENT OF POLICY-BASED

RESOURCE ALLOCATION IN MULTI-CLASS

NETWORKS

4.1 Introduction

Preemption occurs at a prioritized multi-class network, where a new call needs to be

set up with a high priority between a source (S) and destination (D) pair [32] [47]

[75] [77]. When the capacity is insufficient at all feasible routes between the S-D pair,

some existing flows of the lower priorities need to be preempted to accommodate the

new call. Preemption is to decide whether to remove a certain low priority flows to

free the reserved bandwidth for the new call at a chosen route [32] [77]. Hence the

goal is to decide on whether to remove an active flow so that the total preempted

bandwidth can be minimal under given constraints e.g., bandwidth demand of a new

call setup; and available free bandwidth at a link 1.

Connection preemption allows a new high-priority connection to access heavily

crowded core networks, e.g. multi-protocol label switched (MPLS) networks. Con-

nection preemption also improves resource utilization by allowing low-priority flows to

access unused bandwidths [39] [93]. Preemption sees potential applications in emerg-

ing networks also. For example, in 802.11e Wireless LAN, delay sensitive IP packets

in expedited forwarding (EF) class can be served earlier than the best-effort packets

through preemption [76]. Multi-level preemption and precedence (MLPP) has been

1The preempted flows are usually rerouted to other paths. Hence preemption and rerouting
can be considered jointly with slightly different objectives [93]. This work, however, focuses on
preemption on a given path without considering rerouting.
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proposed to classify calls by their importance, which can be used for military net-

works as well as various commercial services [8] [71].

There are two significant challenges for preemption. One is complexity, i.e., pre-

emption is known to be NP-complete [32]. A cause of the computation complexity

is a large number of active flows supported by a core network for which preemption

decisions need to be made. For example, for a 1Gbps link, if the bandwidth of each

flow is in the order of Kbps, there would be thousands of flows supported per link.

The other challenge is spatial dependence of decisions at different nodes. A flow gen-

erally passes through multiple nodes, which makes it difficult for each node to make

preemption decisions independently. That is, preemption is network-centric rather

than node centric.

Centralized preemption maintains at a centralized node the location information

of active flows, their priorities and bandwidth occupancies at the entire route. The

centralized node then decides which active flows to preempt upon the request of a

new call. Therefore, centralized preemption is always optimal, resulting in minimal

preempted bandwidths. But the amount of management information needed and the

associated computation complexity can be overwhelming at the centralized node. For

example, let Ft be the total number of distinct flows per priority class at the route.

Each flow have two states, preempted or not preempted. The total number of pos-

sible states is O(2Ft) for making a centralized decision. When Ft is in the order of

hundreds or thousands [49], centralized preemption decision becomes computation-

ally intractable. Decentralized preemption is then sought for to reduce the amount

of management information and the computational complexity [77].

Decentralized preemption maintains at each node local information, i.e., active

flows at the adjacent link, their priorities and bandwidth occupancy. Such informa-

tion is readily available and local at a node. A node then decides, independent of

the other nodes, which connections to preempt. This, however, may cause conflicting
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local decisions on the same flows across multiple links, resulting in more preempted

bandwidths than necessary. Hence, decentralized preemption neglects the spatial

dependence for the flows across multiple links, and may thus perform poorly. But

the amount of management information and the computation complexity are greatly

reduced.

For example, let F be the maximum number of active flows per link. Let L be

the number of hops on the route. The total number of states is L2F at each link.

Since 2F ≪ 2Ft , compared with centralized preemption, decentralized schemes have

a much smaller search space for preemption decisions. Therefore, most algorithms in

the literature are on decentralized preemption (see [75] [77] and references there in).

Decentralized preemption, however, neglects important spatial dependence for flows

across multiple links.

Distributed decisions take into account spatial dependence through local infor-

mation exchange among neighboring links. In fact, distributed preemption can be

considered as a general setting of centralized and decentralized preemption. Central-

ized preemption corresponds to one extreme with the entire route as the neighbor-

hood whereas decentralized decisions correspond to the other extreme without any

neighborhood. Therefore, the communication/computation complexity can be char-

acterized in terms of neighborhood size. There is a trade-off between the optimality

and the complexity. A strong requirement for distributed decisions is to achieve a

certain optimality requirement, i.e., to be within a given error bound to the optimal

performance, at moderate complexity. This implies that a collection of local decisions

made at nodes based on the local information and exchange with neighbors should

achieve a near-optimal preemption at the network level.

Numerous distributed algorithms and protocols have been developed based on

empirical studies [32] [47] [75] [77]. The performance of these algorithms though is
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usually tested through simulation. Simulations would not provide quantifiable condi-

tions on when and how distributed preemption can be nearly optimal within a given

error bound. This requires modeling a large number of dependent decision variables

of end-end flows and assessing the performance of distributed algorithms accordingly

relative to that of the optimal one. In general, it has been shown to be a difficult prob-

lem to develop a distributed algorithm whose performance is predictable and within

a tolerable degradation from that of the optimal scheme [95]. Hence, the open is-

sues are: (a) When can the corresponding distributed decisions collectively result in a

near-optimal global preemption? (b) How to model a large number of dependent deci-

sion variables and to obtain near-optimal local decisions using distributed algorithms?

We apply machine learning approaches to study these issues. How is distributed

preemption related to machine learning?

Machine learning perspective: A machine learning view of distributed pre-

emption is that individual nodes “learn to make decisions” collectively. Ideally, if each

node had complete information on either active flows at a route, the node would be

able to make correct decisions on which flows to preempt. However, at a given time,

a node has only partial information on active flows and its neighbors’ decisions on the

flows to preempt. But a node can adapt, i.e., learn to make decisions based on those of

its neighbors’. As neighbors learn from neighbors’ neighbors, a node would indirectly

learn what farther nodes decide but with a delay. Eventually, all nodes would collec-

tively make local decisions, resulting in a near-optimal preemption at the entire route.

How would machine learning benefit preemption? The problem of collective learn-

ing and decision making has been a keen interest in machine learning and adaptive
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control [10] [34], but has just begun to see applications in networking [51] [64]. Ma-

chine learning provides a framework in which a large number of decision variables can

be treated jointly. Spatial dependence among these variables poses a key challenge to

preemption due to end-end flows, is an origin of high communication and computa-

tional complexities, and has not been dealt with in depth in the prior work. Machine

learning provides feasible approaches for us to study this problem as summarized

below.

(a) Global model of distributed preemption decisions: Our first step is to develop

a probabilistic model which represents explicitly both the long-range and short-range

spatial dependence of distributed preemption decisions over a pre-determined pre-

empting route. The randomness originates from randomly arriving/departing active

flows and their locations, and also from the insufficient and inaccurate local infor-

mation for distributed decisions. Thus, preemption decisions made on flows at each

node over a given route are also random. We first characterize a cost function for

preemption as a “Hamiltonian” (or system potential energy) [63]. A Hamiltonian

combines local preemption decisions, objectives in terms of bandwidth savings, and

constraints into a single quantity. The constraints are on link capacity and coherent

local decisions for flows across multiple hops. The Hamiltonian is then used to obtain

a spatial probabilistic model as a Boltzmann distribution [33].

(b) Markov Random Field (MRF) and sufficient conditions: The spatial depen-

dence can be characterized through a probabilistic dependency graph of Graphical

Models [33] [53] [55] in machine learning. A probabilistic dependency graph pro-

vides a simple yet explicit representation of the spatial dependence among random

variables. We show that if the dependence of decision variables in Boltzmann distri-

bution is Markov, a globally optimal preemption decision can be obtained collectively

78



www.manaraa.com

by local decisions through local information exchange with neighbors. Such a Markov

probabilistic model is known as a Markov Random Field [33].

In general, distributed decisions may not be spatially Markov but may be well

approximated by a Markov Random Field. As the spatial dependence is caused by

flows across multiple links, we identify traffic patterns of active flows that result in

approximated spatial Markov dependence. We then define the near-optimality of dis-

tributed decisions as the distance between the centralized and distributed decisions,

measured in the Hamiltonian, and obtain sufficient conditions accordingly (i.e., dis-

tance resides within an error bound).

(c) Distributed Decision Algorithms: A near-optimal distributed algorithm is de-

rived based on the developed probabilistic network model. The algorithms can be

implemented through either message passing [55] or Gibbs sampling [33].

(d) Trade-offs: The issues of “when” and “how” are on performance and complexity

of distributed preemption decisions, and their trade-offs. The performance measures

the optimality of distributed preemption decision relative to that of the centralized

decision.

The communication/computation complexity of distributed preemption can be

characterized by the amount of information used in decision making. Distributed

decisions reduce complexity by using information exchange only with neighbors, but

may deviate from the optimal performance. Hence performance and complexity trade-

off is to be studied through both analysis and simulation.
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(b) Preemption decisions at each hop over the route of a new connection

Figure 21: Example of preemption

4.2 Distributed Preemption

4.2.1 Example

Figure 21 (a) shows an example network, and Figure 21 (b) illustrates distributed

preemption on a given route. Assume that a new request is made on the route between

the SD pair, and every flow has the same bandwidth. The centralized preemption

would preempt two existing flows as { flow 1, and flow 2 } that are denoted as X. Such

a preemption is obviously optimal. Now consider distributed preemption. Take node

2 as an example. The local information available at node 2 includes the priority and

the bandwidth of flow 1, 3 and 4 that pass through this node. When the bandwidth

is the same for all flows, node 2 may decide to preempt flow 4 without knowing that

nodes 1 and 3 both decide to preempt flow 1. Such a decision would result in more

flows to be preempted than necessary compared with the centralized decisions. In

contrast, flow 1 would be chosen at node 2 if node 2 also has information on the
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decisions at the neighbors (i.e., node 1 and 3). The preemption decisions at a node

will affect either immediately or after the being-preempted flows are rerouted [74].

This example shows:

(a) Local decisions are spatially dependent. The spatial dependence originates

from both flows trespassing multiple nodes and link capacity that constrains flows on

a link/node.

(b) The spatial dependence can be taken into consideration by exchanging local

decisions with neighbors.

(c) Decisions exchanged would enhance consistent decisions, and thus improve the

optimality of local preemption done at nodes.

This motivates the needs of cooperative distributed preemption which is formu-

lated below.

4.2.2 Problem Formulation

Assumptions: For distributed preemption, we assume that a preempting route (i.e.,

denoted with R1L) is pre-determined for a new connection [32] [77], and composed

of nodes 1 to L. We assume that the traffic flows on the route belong to multiple

priority classes 1, · · · , imax, and a new connection belongs to class inew and demands

bandwidth cnew.

Variables: Let SF be a set of all active flows on the route, where SF = {f 1, · · · ,

f |SF |} with |SF | being the cardinality of set SF . fk and Bk denote flow k on the

preempting route and its bandwidth. Let fij be the set of all active flows at link (ij).

Let dkij denote the preemption decision on flow k at link (ij) for 1 ≤ i ≤ L − 1

and j = i + 1. dkij=1 if link (ij) decides to preempt the flow k; dkij=0, otherwise 2.

Let dij denote the set of local preemption decisions on all active flows at link (ij).

2Preemption decisions at link (ij) are actually done at node i. For convenience, the decisions are
done at the link (ij) throughout this work.
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Let d denote all local decisions at the route, where d = { dij, for∀i, j}.

Let dk1L denote the preemption decision on flow k over the entire preempting route.

That is,

dk1L = 1 −
L−1
∏

i=1

(1 − dkii+1), (27)

where dkii+1 is a local decision made at node i (for link (i, i+1)). This means that

dk1L = 1 for flow k to be preempted from the given route if at least one node decides

to remove the flow, and dk1L = 0 if all nodes decide to keep the flow. Let d1L denote

the set of preemption decisions on the flows over the preempting route 1L.

Problem statement: Consider the information maintained at node i (1 ≤ i ≤

L−1): (a) complete local information on active flows at link (ij) which includes flow

ID k, class priority ik, bandwidth Bk, for k ∈ fij and 1 ≤ k ≤ |SF |; and (b) neighbor

information that includes decisions from the neighboring links within Nd hops.

The constraints of preemption include link capacity and consistent local decisions

on the same flows across multiple links. An objective of distributed preemption is

to minimize the total preempted bandwidth for accommodating the new call. Dis-

tributed preemption is to obtain dkij at node i for 1 ≤ i ≤ L − 1 using the local and

neighbor information, where dkij’s for 1 ≤ i ≤ L − 1 should collectively achieve the

objective under the given constraints. A key challenge is how to model and coordi-

nate a large number of spatially dependent decisions dkij’s locally to achieve the global

objective of preemption.

4.3 Probabilistic Spatial Model of Preemption Decisions

We first develop a global model to represent the spatial dependence of a large number

of distributed preemption decisions. We then derive a local model as an approxima-

tion. The global and local models are developed through probabilistic graphical

models in machine learning.
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4.3.1 Global Model

A global model should include accurate spatial dependence resulting from objectives

and constraints on distributed preemption decisions. The objective function is to

minimize total preemption costs and a function of priority of preempted flows, amount

of preempted bandwidth, and total number of preempted flows [77] [48].

4.3.1.1 Deterministic Flows

To model the spatial dependence, we first assume that a set of active flows is given

(and thus deterministic). To set up a new connection of a high priority, the objective

is to minimize an overall preemption cost H(d), where

H(d) =
∑

(i,j),k

αkB
kdkij −

∑

(i,j),k1

∑

(m,n)6=(i,j),k2

αk1B
k1dk1ij d

k2
mnδ(k1, k2) + β

∑

(i,j)

(cnew −
∑

k

Bkdkij − B0
ij)

2U(cnew −
∑

k

Bkdkij − B0
ij),

where αk is the priority weight of flow k, B0
ij ≥ 0 is the unused bandwidth at link

(i, j), δ(k1, k2)=1 if k1=k2; 0, otherwise. β is a large positive constant.

The first term is the cost corresponding to the total preempted bandwidth. An

objective of preemption is to minimize preempted bandwidth by removing just enough

lower-priority flows for accommodating the new call.

The second term corresponds to the constraint on making consistent local decisions

on the same flow across multiple links. Consider the term “αk1B
k1 dk1ij d

k2
mnδ(k1, k2)”

as an example. For flow k that uses both links (i, j) and (m,n), this quantity is

minimized when these two links decide to preempt the same flow, i.e. dkij=d
k
mn = 1.

The third term corresponds to the capacity constraint, where U(cnew−
∑

(i,j),k B
kdkij−

B0
ij) is an indicator function. U(cnew−

∑

(i,j),k B
kdkij−B0

ij) = 0 if the total preempted

bandwidth at link (i, j),
∑

(i,j),k B
kdkij+B

0
ij ≥ cnew, and U(cnew−

∑

(i,j),k B
kdkij−B0

ij) =
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1, otherwise.

In (28), by replacing αkB
k and αk1B

k1 with (αkB
k+γk) and (αk1B

k1 +γk1) where

0 ≤ αk, αk1, γk, γk1 ≤ 1, we can consider the priority of preempted flows, the amount

of preempted bandwidth and the number of preempted flows together. The objective

we consider in (28) corresponds to γk=0 and γk1=0 for simplicity.

Given a set of active flows, centralized preemption can always preempt an optimal

subset of flows, resulting in minimal preempted bandwidths. The optimal subset of

preempted flows can be obtained through deterministic optimization, for example,

linear programming [98].

Distributed preemption allows each link iteratively and asynchronously updates

its decision based on local information and neighbors’ decisions. Each link/node

only accesses to limited and initially inaccurate information from near neighbors

and missing information from far neighbors. But through neighbor’s neighbors, such

information would eventually propagate to all nodes, resulting in globally consistent

decisions. Such an idea results from dynamic programming and thus in a similar

spirit as Bellman-Ford equation 3 [13].

4.3.1.2 Random Flows

We now extend the above formulation to random flows. What and how many flows

are active at which links are related to user behaviors and thus random. Hence

active flows and their aggregation at individually links should be regarded as random

variables. Preemption decisions made on active flows should be considered as random

also. A set of decisions thus form a sample space Sd = {d}, a subset of which consists

of events due to distributed decisions. A given set of decisions on a given set of flows

3dx(y) = minv∈Nx
{c(x, v) + dv(y)}, where dx(y) is the cost of least-cost path from x to y; v is a

neighboring node of node x (i.e., Nx); and c(x, v) is the link cost of link (x, v).
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is then a sample (realization) of an event. One such sample is given in the example

shown in Figure 21, where d={d1
12, d

3
12, d

1
23, d

4
23, d

1
34, d

5
34, d

2
45, d

5
45 }= {1, 0, 0, 1, 1, 0,

1, 0}. This relates random and deterministic flows and decisions.

To obtain an optimal set of preempted flows, stochastic rather than deterministic

optimization should be used, and this requires a probability distribution of d.

Such a probability distributions can be obtained through graphical models defined

on neighborhood systems [33]. The neighborhood system can be characterized by

Hamiltonian (energy) [33]. The energy of a decision variable results in a per-variable

preemption cost, αkB
kdkij, in the first terms of (28). Interactions between decision

variables result in
∑

(i,j),k1

∑

(m,n)6=(i,j),k2
αk1B

k1 dk1ij d
k2
mn δ(k1, k2) as the second terms

of (28).

Combining the cost and the constraints, H(d) corresponds to a Hamiltonian of d.

The Hamiltonian results in a Botlzmann (Gibbs) distribution [33] [63],

P (d) = Z−1
0 exp

(−H(d)

T

)

, (28)

where T is the temperature [33], and Z0 is a normalization constant. Hence the

Boltzmann distributed provides a mathematical representation of spatial dependence

in distributed decisions. The minimum of the Hamiltonian corresponds to optimal

preemption decisions that maximize the probability.

4.3.1.3 Probabilistic Graphical Models

The intricate spatial dependence among a large number of decision variables can be

represented explicitly by probabilistic graphical models. A graphical models relates a

probability distribution of random variables with a corresponding dependency graph

[33] [53] [55]. A node in the graph represents a random variable and a link between

two nodes characterizes their dependence. In particular, a set of random variables

v forms Gibbs Random Field (GRF) if it obeys a Gibbs distribution [63]. A Gibbs
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distribution has the same form as a Boltzmann distribution. A Gibbs distribution

satisfies the positivity condition, meaning that all decisions have a positive proba-

bility. One other important property is the spatial Markov property defined by the

neighborhood system and shown by Hammersley-Clifford theorem.

Markov Random Fields correspond to an interesting type of probabilistic graphical

models where a random variable is conditionally independent of the other nodes given

its neighbors. The conditional independence is spatially nested, i.e., a node depends

on its far neighbors through neighbors’ neighbors. Such nested dependence can be

observed explicitly through local connections among nodes in a dependency graph.

The corresponding Boltzmann (Gibbs) distribution is thus factorizable over clique

potentials [33].

An important implication to preemption is that if distributed decisions result in an

MRF, local decisions using neighbor information is optimal. Do distributed preemp-

tion decisions d form a Markov Random Field? We visualize the spatial dependence

of the decision variables provided by the Gibbs distribution. A factor graph [55] is

shown in Figure 22.

In Figure 22, gij(d) is a local function that encompasses the flows passing through

link (i, j), i.e.,

gij(d) =
∑

k∈fij

αkB
kdkij −

∑

k1∈fij

∑

(m,n)6=(i,j),k2∈fmn

(29)

αkB
kdk1ij d

k2
mnδ(k1, k2) + βU(cnew −

∑

k∈fij

Bkdkij − B0
ij),

where fij is the set of active flows at link (i, j).

The graph shows that in general a decision random variable as a node on the
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Figure 22: Spatial dependence of decision variables

graph can have connections with both near and far neighbors. This shows the global

dependence, which results from long-haul flows which extend to far neighbors. This

implies that in general, the decision variables are not spatially Markov, and the Gibbs

distribution is thus not factorizable.

4.3.2 Local Model

If the long-range links can be eliminated in the probabilistic dependency graph, the

spatial dependence can be approximated through a spatial Markov model, i.e., a

Markov Random Field. Such a Markov Random Field considers only dependence of

decision variables with their neighbors, resulting in a truncated Hamiltonian,

H l(d) =
∑

(i,j),k

αkB
kdkij −

∑

(i,j),k1

∑

(m,n)∈Nij ,k2

αk1B
k1dk1ij d

k2
mnδ(k1, k2) + β

∑

(i,j)

(cnew −
∑

k

Bkdkij − B0
ij)

2U(cnew −
∑

k

Bkdkij − B0
ij),
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where Nij is an important parameter that contains only neighboring links of (ij).

The neighborhood size Nd=|Nij |.

The corresponding Boltzmann distribution is

P l(d) = Z−1
0 exp

−H l(d)

T
. (30)

P l(d) is an approximated likelihood function,

P l(d) =

j−1
∏

i=1

gi,i+1(d), (31)

where gi,i+1(d) is a local likelihood function for the connections at link (i, i + 1).

gi,i+1(d) can be further decomposed into all clique potentials associated with connec-

tions at link (i, i+ 1):

gi,i+1(d) =
∏

c∈Ci,i+1

exp(−ψc(d))

= exp(−
∑

c∈Ci,i+1

ψc(d)), (32)

where Ci,i+1 is the set of all cliques of link (i, i+ 1), and ψc(d) is a potential function

of clique c.

Consider an example that the neighborhood size Nd = 2 for all links, the corre-

sponding factor graph is then the simplest with only nearest neighbor connections,

as shown in Figure 23.

4.4 Distributed Preemption Algorithms

We now assume that a local model is a good approximation of the global decision

model. The spatial Markov local model then results in a distributed algorithm where

nodes can make local decisions on connection preemptions through information ex-

change with neighbors.
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Figure 23: Localized spatial dependence of d with Factor Graph

4.4.1 Distributed Algorithm

The distributed algorithm obtains a decision that maximizes the approximated like-

lihood function and minimizes the cost function,

d̂ = argmax
d

P l(d)

= argmin
d
H l(d). (33)

Since P l(d) is factorizable, maximizing the global likelihood function reduces to

maximizing the local likelihood function at cliques, i.e., P l(dij|dNij
) for 1 ≤ i ≤ L−1

and j = i+ 1, where dNij
is the set of decision variables of neighboring links. These

local likelihoods are functions of the decision variables of neighboring links, and thus

the decisions can be updated locally. In addition, the local maximizations result in

coupled equations due to the nested Markov dependence, which shows that informa-

tion exchange is needed only among neighbors.
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Maximizing local likelihood functions can be implemented as local learning algo-

rithms at individual nodes. The learning algorithms perform probabilistic inference

using either approximated sum product algorithm [55] or stochastic relaxation [33].

The sum product algorithm can be applied to the factor graph in Figure 23. There,

the function nodes correspond to the local potential function of a link, which consists

of active flows that pass the link and the other active flows which are correlated with.

The variable nodes correspond to the active flows over the preempting route. This

algorithm produces an exact solution for a graph that has no loops, and an approx-

imation for a loopy graph [55]. The factor graph of preemption problem is usually

loopy, resulting in approximated decisions.

Stochastic relaxation can be applied for each link to make local preemption de-

cisions. Let d
SF \{k}
ij be a set of decisions on active flows at link (ij), excluding the

decision on flow k. Let dkij(t+ 1) be an updated decision on flow fk at the (t+ 1)th

iteration and at link (ij). Then,

dkij(t+ 1) =











1, with P l
(

dkij(t+ 1) = 1|dS\{k}
ij (t),dNij

(t)
)

,

0, with 1 − P l
(

dkij(t+ 1) = 1|dS\{k}
ij (t),dNij

(t)
)

,
(34)

where

P l
(

dkij(t+ 1) = 1|dS\{k}
ij (t),dNij

(t)
)

=
exp

(

−ψij(dkij(t+ 1) = 1)/T (t+ 1)
)

∑

k∈{−1,1} exp
(

−ψij(dkij(t+ 1))/T (t+ 1)
) ,

ψij
(

dkij(t+ 1) = 1
)

= αkB
k −

∑

(m,n)∈Ni,j ,k1

αk1B
k1dk1mnδ(k, k1) +

β(cnew −
∑

k1

Bk1dk1ij − B0
ij)

2U(cnew −
∑

k1

Bk1dk1ij −B0
ij).

A cooling scheduler is applied to the temperature T (t) = T0/log(1+t) with T0=3.0.

This results in an almost-sure convergence of the algorithm to the global minimum

Hamiltonian [33]. That is, with the iterative and distributed updates, the global

minimum of the approximated Hamiltonian H l(d) can be reached asymptotically

with probability one.
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4.4.2 Example

We now revisit Figure 21 to show an example of the distributed algorithm. Consider

links (1, 2) and (2, 3), and assume that neighborhood size Nd=1. That is, a node only

exchanges information with its nearest neighbors.

At initial stage, no flows are preempted, i.e. {d1
12(0)=0, d3

12(0)=0, d1
23(0)=0,

d4
23(0)=0 }. When t = 1, the decision variables are updated,

d1
12(1) = arg max

d∈{0,1}
P (d1

12(1) = d|d3
12(0), dN12(0)),

where dN12(0) = {d1
23(0), d4

23(0)}. The updated decision d1
12(1) is sent to the neigh-

boring links. This process is applied similarly to the other decision variables. At the

second time epoch (t = 2),

d4
23(2) = arg max

d∈{0,1}
P (d4

23(2) = d|d1
23(1), dN23(1)),

where dN23(1) = { d1
12(1), d3

12(1), d1
34(1), d5

34(1)}.

The process is repeated until an equilibrium state is reached.

4.4.3 Information Exchange

The distributed preemption decisions require information exchange with neighbors.

The clique structure of the Markov Random Field determines the range of information

exchange, which is the neighborhood size Nd. The type of the information exchanged

is dNij
(t) as in the conditional probability in (34). The amount of information used

at a decision making characterizes the communication/computation complexity. The

information exchange is per-flow based but moderate when limited to neighbors.

4.5 Near-Optimality and Complexity: Analysis

In this section, we conduct analytical studies to identify a certain sufficient conditions

for the near-optimality of the distributed preemption, the communication/computation

complexity, and the optimality-complexity trade-offs.
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4.5.1 Short-range dependent decision variables

When are distributed preemption decisions optimal? To answer this question, we

need to consider how well a Markov Random Field approximate the global model.

This should be done by studying active flows resulting from traffic patterns since

flows are the origin of spatial dependence.

4.5.1.1 Bounded-Length Flows

Traffic patterns of active flows result in spatial dependence among decision variables.

Consider simplified traffic patterns where the hop-count of each active flow is bounded

by h0. Then the set of preemption decisions are strictly Markov as shown below.

Lemma 2: Assume that the hop-count of each active flow is bounded by h0 (h0 ≥ 1).

Let Nh0
mn be the neighborhood of link (m,n). Nh0

mn includes all links within h0 hops from

(m,n). Let d
N

h0
mn

={duv, for ∀(u, v) ∈ Nh0
mn} denote a set of decisions in the neigh-

borhood, and d\dmn be all decision variables except dmn. Then, P (dmn|d\dmn) =

P (dmn|d
N

h0
mn

).

The proof is provided in Appendix C. Lemma 2 shows that the set of decision

variables on active flows of a limited span forms a Markov Random Field (MRF),

where h0 corresponds to an upper bound of the neighborhood size of the MRF. This

is intuitive as flows of a bounded length corresponds to the disk model of wireless

multi-hop networks.

4.5.1.2 Shortest-Path Flows

In reality, however, the hop-count of active flows is a variable and cannot be assumed

to be bounded. Thus, we study the spatial dependence of decision variables in a more

general setting of shortest path flows. Shortest-path flows constitute more realistic
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traffic patterns and are thus considered with the following assumptions for analytical

convenience:

(1) A network is planar and homogeneous where each node (except edge nodes)

has the same nodal degree d0 (d0 ≥ 2).

(2) A source-destination pair is chosen randomly from all pairs in the network.

(3) A preempting route is a shortest-path between the source and destination node

of a new connection.

(4) Active flows are assumed to take shortest routes from randomly-chosen source-

destination pairs whose paths partially coincide with the route of the new connection

setup.

We now define a measure of spatial dependence of two links on the preempting

route (e.g., (i− 1,i) and (j,j + 1) for 1 ≤ i− 1 and i ≤ j < L) such as Definition 1.

Definition 1. Link-Dependency Probability Pij : Pij denotes the probability that a flow

uses both links (i − 1, i) and (j, j + 1), which are separated by |j − i| hops on the

preempting route.

The link-dependency probability Pij then characterizes the spatial dependence of

any two flows at these two links.

Lemma 3: Let P l
ij be a lower bound of Pij. For shortest-path flows under assumptions

(1), (2), (3), and (4), P l
ij = ( 1

d0−1
)|j−i|, where |j− i| is the hop distance between links

(i− 1, i) and (j, j + 1).

The proof is provided in Appendix D. This lemma suggests that the continuity of

a shortest-path flow follows at least a geometric probability, where 1
d0−1

is the lower

93



www.manaraa.com

bound of the probability for such a flow to continue at the next hop.

Lemma 4: Let P u
ij be an upper bound of Pij. Consider a network topology of a regular

lattice with node degree 4. For shortest-path flows under assumptions (1), (2), (3),

and (4),

Pij ≤











C(|j−i|, |j−i|
2 )

2(2|j−i|−1)
, |j − i| = 2

C(|j−i|, |j−i|
2 )

3(2|j−i|−1)
, |j − i| > 2,

(35)

where C(a, b) is a combinatorial coefficient, C(a, b)= a!
(a−b)!b! , and |j − i| ≥ 2. For

|j − i| >> 1 , P u
ij ≈ 1

2
√

2π|j−i|
for |j − i| = 2; and 1

3
√

2π|j−i|
for |j − i| > 2.

The proofs can be obtained by counting the number of shortest paths between

nodes i and j, and is given in Appendix E.

As the hop distance |j− i| increases, both bounds decrease, one exponentially and

the other polynomially. Figure 24 depicts both the upper and lower bounds as well as

empirical probability Pij. The probability Pij is measured on a regular lattice network

of 250 nodes, where active flows are routed onto the shortest paths between randomly

chosen source-destination pairs. The probability Pij decays fast and its decaying rate

is more close to that of the lower bound P l
ij which exponentially decays.

Quantitatively, Lemma 3, 4 and the empirical result suggest that on average,

shortest-path flows share only a few hops with the preempting route. Thus, Markov

Random Fields may be a good approximation to a set of decision variables d.

4.5.1.3 General Flows over a Random Topology

Consider a random topology of N nodes. Node degree of a node i is denoted with

d0(i), which is 1 ≤ min(d0) ≤ d0(i) ≤ max(d0) ≤ N . For two links (i, i + 1) and

(j, j+1) over a preempting route, let |j−i| denote the hop counts of the shortest-path

between node i and j in the random topology. Note that the preempting route may
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Figure 24: Upper and lower bounds of the probability that a flow visits both links
(i− 1,i) and (j,j + 1) on the preempting route

not follow the shortest path.

Lemma 5: P l
ij = ( 1

max(d0)
)N−1; and P u

ij = ( 1
min(d0)

)|j−i|.

The proof is obvious and thus omitted. From Lemma 5, it is a general phenomenon

that the spatial dependence of the preemption decision variables at any two links

decays as the distance between two links or the node degree of intermediate nodes

increases.

4.5.2 Sufficient Conditions for Near-Optimality

We now derive sufficient conditions for near-optimality of distributed preemption.

Definition 2. Near-optimality of distributed decisions: Given a set of randomly gen-

erated flows in a network, a randomly chosen S-D pair of a new connection is routed
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over the network with a proper routing algorithm (e.g., shortest-path first algorithm).

Let d∗ and d̂ be two sets of decisions that minimize the global Hamiltonians H() and

its approximation H l(), respectively. The optimality of distributed decisions d̂ is

measured by the expected value of the difference ∆, where ∆ = |H(d∗) − H(d̂)|. The

difference ∆ is considered to be random when stochastic relaxation is used.

Given a desired performance ǫth > 0, if E(∆) ≤ ǫth, d̂ is near-optimal, where E()

denotes the expectation with respect to solutions.

We now derive sufficient conditions for the near-optimality. This suffices to inves-

tigate whether and when the long-range dependence of active flows can be neglected

in the global Hamiltonian. For feasibility of analysis, we consider in this paper traffic

patterns with a geometric probability drawn from the previous section.

Let pc be a continuity probability for a flow to continue to the next link on the

preempting route. Such a probability has been used in two other contexts to describe

the continuity of a wavelength path in optical networks [7] [65]. pc characterizes the

range of dependence of active flows. In fact, if a flow continues with probability

pc at each link independent of other links, the length of an active flow would obey

a geometric probability [65]. For example, pc = 1
d0−1

for the lower bound of the

continuity probability of the shortest-path flows.

Although a large number of flows are short-range dependent, there can still be

long flows. So a sufficient condition for the near-optimality needs to specify when the

aggregated effects of long flows are negligible in the truncated Hamiltonian. For fea-

sibility of analysis, we consider a simplified scenario that the variance of bandwidths

of active flows is not large.

Theorem 3: Let B0 > 0 be a constant bandwidth. Let pc be the probability for a

flow to continue at the next hop on preempting route. For given ǫB (0 < ǫB < 1),

96



www.manaraa.com

assume that bandwidth Bk of flow k satisfies |Bk−B0

B0
| ≤ ǫB for ∀ k. Then

E(∆) ≤ pNd
c B0

1+ǫB
1−ǫBL,

where C is link capacity, and Nd is the size of neighborhood.

The proof is provided in Appendix F. Theorem 3 provides the following observa-

tions when active flows follow a geometric distribution.

(a) For a given pc and C, the larger the neighborhood size Nd in the Markov

Random Field, the smaller the upper bound, and the better the performance may be

for distributed preemption.

(b) The upper bound increases with respect to link capacity C as C
B0(1−ǫB)

char-

acterizes the maximum number of active flows. Thus, the performance of distributed

preemption may degrade when link capacity increases.

(c) The upper bound also increases with respect to the route length (L).

It should be noted that the above studies of the optimality assumes that the

stochastic relaxation is capable of obtaining a global minimum of the global and local

models. This holds true as the convergence of the algorithm occurs almost surely

[33].

4.5.3 Complexity

A key advantage of distributed preemption is the reduced complexity, i.e. the limited

information exchange only with neighbors.

Definition 3. Computation Complexity: Let fmax denote the maximum number of

active flows at a link. Let iter denote the total number of iterations until convergence.

Computation complexity (CompC) at a node indicates the complexity of the preemp-

tion decisions on the active flows at the node. CompC = O(fmaxiter).
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(34) shows that the complexity for the preemption decision on a flow is O(1), thus

the complexity at a node CompC = O(fmaxiter).

Min-Conn and Min-BW [77] are decentralized algorithms that minimize the num-

ber of preempted flows and the amount of preempted bandwidth at each hop, respec-

tively. The complexity of Min-Conn and Min-BW are O(f 2
max) and O(fmax2

fmax),

respectively.

By managing iter to be bounded with a proper small value, we can obtain a glob-

ally near-optimal decision that is obtained with a smaller complexity than that of

decentralized algorithms.

Definition 4. Communication Complexity: Let Nd denote the neighborhood size for

exchanging information in distributed preemption. Communication complexity (CC)

of a node is defined as the total amount of information exchanged at the decision

making of the node. CC = O(Ndfmaxiter).

Hence the communication/computation complexity grows linearly with respect to

the neighborhood size and the number of active flows. The communication/computation

complexity for a centralized scheme increases linearly with the number of hops on the

preempting route L. The complexity for distributed preemption, however, is bounded

by Nd, which is due to local information exchange among neighbors. For the simplest

case, Nd can be as small as 1.

4.5.4 Optimality and Complexity Trade-off

Reducing the communication/computation complexity results in a simpler local model.

The performance, however, may degrade accordingly. Therefore, a trade-off between

the optimality and complexity needs to be explored.
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Theorem 4: For a given performance ǫth, if Nd ≥ logpc
( ǫth
CL

1−ǫB
1+ǫB

), then E(∆) ≤ ǫth.

Theorem 4 can be obtained directly from Theorem 3 through simple algebraic

manipulation, and the proof is provided in Appendix G.

Theorem 4 shows that for a better performance (i.e., smaller error bound ǫth), the

neighborhood size Nd needs to be increased in order of O(log(ǫth)). Similarly, for a

fixed neighborhood size Nd, as Nd decreases, the available performance bound gets

decreased.

4.6 Performance and Complexity: Simulations

We now study further how the performance of distributed decisions varies with respect

to topology (e.g., neighborhood size) and traffic patterns through simulation.

4.6.1 Performance Metrics and Simulation Setting

Two performance metrics are used in our simulation study that quantify the effec-

tiveness of distributed preemption in bandwidth savings. One metric is the average

preempted bandwidth at a link,

1

L

∑

k

Bkdk1L, (36)

where Bk and dk1L are the bandwidth and the global preemption decision of flow k,

respectively. The other metric measures the available bandwidths at individual links,

where

1

L







L−1
∑

i=1

∑

k∈fi,i+1

Bkdk1L






. (37)

Consider Figure 21 again as an example. Assume the new flow requires bandwidth

cnew = 5, and each active flow occupies the same bandwidths. When three flows 1, 2,

and 4 are preempted, the average preempted bandwidth at a link is (5 + 5 + 5)/4 =
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15/4, and the average available bandwidth is (5+10+5+5)/4 = 25/4. Note that the

average preempted bandwidth at a link can be less than cnew = 5, and the average

available bandwidth is always greater than cnew.

4.6.2 Simulation Setting

Our empirical studies consider a multi-class network with two service classes, (i.e.,

class 1 and 2). For each connection, the source and destination nodes are picked up

at random among the nodes in the network. The capacity C of each link is 100 Mbps.

The bandwidth of class 1 flows is uniformly distributed between 1.25 and 2.5 Mbps,

and that of class 2 flows is 2.5(2k − 1) Mbps for 1 ≤ k ≤ 8. Assume that a new

connection belongs to class 2, and thus the required bandwidth cnew = 2.5(2k − 1)

Mbps for 1 ≤ k ≤ 8.

We use both mesh and power-law topologies in the simulations. Figure 25 (a)

shows a power law topology with 80 nodes, which is generated through BRITE

[18][19]. The histogram of the nodal degree is shown in Figure 25 (b) for a power law

topology [19] with 80 nodes. We also have used mesh topologies, e.g. a lattice topol-

ogy with 100 nodes. For a lattice topology of d0 = 4, the influx link (i, j) onto node

j cannot be used for the outflux link. Thus, a lattice topology of d0 = 4 corresponds

to the cases of the flow-continuity probability pc = 1
3
. For a power-law topology, due

to clustering, there are only a few hops on the average a S-D pair of each active flow.

The flows of each service class are evenly distributed over the network. There is

no traffic at the initial time. The arrival and the departure flows of each class follow

a Poisson distribution with arrival rate (λi) and departure rate (µi), for i = 1, 2.

We conduct over 10 experiments with random initial conditions to obtain each

curve. The distributed algorithm is used to obtain a set of local decisions. The

preemption decision for the flows on the path is then obtained according to Section

4.4. The performance metrics are averaged over all runs.
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Figure 25: Topologies used in Performance Evaluation

4.6.3 Lattice and Power-Law Topology

For lattice and power-law topologies, multiple active flows are routed over the shortest-

path between S-D pairs and fully occupy the network. A new connection setup is done

with bandwidth demand cnew=20 Mbps. The experiments are conducted as described

in Section 4.6.2.

Distributed preemption decisions are done by (34) with the change of neighbor-

hood size 0 ≤ Nd ≤ 2. Decentralized decisions are done with Min-Conn algorithm
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[77] for comparisons. The results are shown in Table 4 and 5. In both topologies,

the preemption costs are sharply reduced with the cooperation with neighbors (i.e.,

Nd > 0).

Specifically, in lattice topologies, the node degree d0=4 can be characterized with

the flow-continuity probability pc=1/3. The link-dependency probability Pij (in Defi-

nition 1) decreases in the order of O(p
|j−i|
c ). Thus, as Table 4 shows, with Nd = 1, the

preemption cost of distributed decision can be reduced by 50% compared to Nd = 0

or comparison algorithm.

In power-law topologies, nodes have heterogeneous degrees, and the path-length

of a connection is only a few hops. Thus, the link-dependency probability Pij also

decays sharply for |j−i| >> 1 (in practice only 2 or 3 hops). The results of power-law

topologies are similar to that of lattice topologies.

Table 4: Preemption Costs on a Lattice Topology of d0=4
Comparison Nd=0 Nd=1 Nd=2

16.7 14.7 7.6 6.3

Table 5: Preemption Costs on a Power-Law Topology
Comparison Nd=0 Nd=1 Nd=2

17.2 15.9 8.8 7.5

4.6.4 Neighborhood Size and Traffic Patterns

In the following subsections, we characterize the topology with the flow-continuity

probability pc. At each experiment, active flows are generated randomly for one

value of flow-continuity probability pc and neighborhood size Nd. This is repeated for

a wide range of parameter pc and Nd values.

Now consider a preempting route with 10 hops (i.e., L=10) and a new connection

with bandwidth demand cnew=20 Mbps. The experiments are conducted as described
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in Section 4.6.2.

Figure 26 (a) shows that the preempted bandwidth decreases sharply by including

the information only from the nearest neighbors. This is especially significant for

a small pc (e.g. pc=0.3) which corresponds to short flows. Nd=0 corresponds to

decentralized decisions where there is no information exchange with neighbors. Hence

the figure shows that the cooperation with the nearest neighbors (i.e., Nd=1) can

improve the performance by 53%.

The cooperation with far neighbors (e.g., Nd=4) produces another 3.3% for pc =

0.3. But the improvement is not as significant given the increase of computation

complexity. Hence, for short flows, the information exchange between the nearest

neighbors seems to be sufficient to achieve the near-optimality.

As pc increases, the dependence among decision variables on different links in-

creases, and the performance gains are more pronounced with a larger neighborhood

size. Figure 26 (b) shows that the preempted bandwidth linearly decreases with the

increase of pc for a given Nd. As pc increases, the correlation of any two flows at two

different links increases accordingly. Thus, for a given Nd, the amount of preempted

bandwidth decreases with the increase of pc.

Figure 26 (b) also shows that the preempted bandwidth of the proposed deci-

sion algorithm is smaller than that of Min-Conn [77] algorithm. The complexity of

Min-BW algorithm is O(fmax · 2fmax), which is computationally intractable. Thus,

Min-Conn algorithm (whose complexity is O(f 2
max)) is used for comparison.

We now examine the average available bandwidth at a link. Note that the available

bandwidth that is larger than cnew is redundant and undesirable. Figure 27 (a) shows

that the redundancy of the available bandwidth decreases sharply by incorporating

the information from the nearest neighbors. Again this is pronounced for a small pc

(e.g. pc=0.3). Thus, the cooperation with near neighbors seems to be sufficient for
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Figure 26: Average preempted bandwidth, with cnew=20 Mbps, C=100 Mbps, and
L=10 hops on the preempting route

achieving a near-optimal performance with short-range dependent flows.

Figure 27 (b) shows that the available bandwidth linearly increases with the in-

crease of pc for a given Nd. As pc increases, the correlation between any two connec-

tions at two different links increases accordingly. Thus, for a given Nd, the available

bandwidth increases with the increase of pc.

Figure 27 (b) also shows that the performance of distributed preemption with a

larger Nd is closer to the optimal performance where the available bandwidth should

be cnew = 20.
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Figure 27: Average available bandwidth. cnew=20 Mbps, C=100 Mbps, and L=10

4.6.5 Path Length

Now we consider the impact of path length L for fixed pc=0.4, cnew=20 Mbps, and

C = 100 Mbps. For a given Nd, as L increases, the probability of preempting a flow

that is already preempted at another link increases accordingly.

Figure 28 (a) shows that for allNd values, the corresponding preempted bandwidth

decreases as L increases. However, the decrease of preempted bandwidth is lower

bounded for L > 30 hops, such as Figure 28 (b).

The average available bandwidth shows similar characteristics. Figure 29 (a)
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Figure 28: Average preempted bandwidth. cnew=20 Mbps, C=100 Mbps, and
pc=0.4

shows that for all Nd values, the corresponding available bandwidth decreases with

the increase of L, which is lower bounded as L increases, such as Figure 29 (b).

4.6.6 Bandwidth Demand

Now we consider the impact of bandwidth demand cnew of a new connection together

with the neighborhood size. The other parameters are fixed and chosen as pc=0.4,

and C = 100 Mbps.

Figure 30 shows that for all Nd values, the corresponding preempted bandwidth
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Figure 29: Average available bandwidth, with cnew=20 Mbps, C=100 Mbps, and
pc=0.4

increases as cnew increases. Moreover, the gain of cooperative preemption increases

also.

4.7 Conclusions

In this work, we have studied distributed connection preemption in multi-class net-

works. The work is motivated by the fact that connection preemption is known to

be NP-complete. Centralized preemption can achieve an optimal performance but
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Figure 30: Average preempted bandwidth, with C=100 Mbps and pc=0.4, varying
cnew

with an intractable communication and computation complexity. Decentralized pre-

emption is computationally feasible but lack of a good performance. This work has

focused on whether a near-optimal performance can be achieved by distributed pre-

emption at a moderate communication/computation complexity. We have developed

a distributed framework, where nodes make local preemption decisions through coop-

eration with neighbors. The framework treats distributed preemption as a machine

learning problem where a large number of statistically dependent decisions can be

treated jointly.

Specifically, we have developed a probabilistic spatial model of distributed preemp-

tion decisions. We have shown that a sufficient condition for distributed preemption

to be near-optimal is that the spatial model is a Markov Random Field. We have then

identified a certain sufficient conditions on when a Markov Random Field holds. In

particular, the sufficient conditions examine commonly-used traffic patterns including

shortest-path flows. The sufficient conditions then quantify the joint impacts of the

flow-continuity probability, the link capacity, the communication/computation com-

plexity of distributed algorithms, and route lengths for short-range dependent active

flows.
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Based on the probabilistic graphical models, we have applied two distributed algo-

rithms based on stochastic relaxation and message-passing. We have shown through

analysis and simulations that for short-range dependent flows, information exchange

with only nearest neighbors can significantly improve the performance of preemp-

tion. The use of more neighbors would result in a near-optimal performance but the

improvement is not as pronounced when the complexity increases.

Future work involves studying computation time in terms of delays and an exten-

sion to other traffic patterns including long-range dependent flows.
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CHAPTER V

CONCLUSION

This chapter summarizes the contribution of this research and provides discussions

about the future directions of this research.

5.1 Contributions

The objective of this proposed research is to provide fundamental understandings

about the interactions and inter-dependence among cross-layer network parameters,

and to find the conditions of the spatial dependence to guarantee the near-optimality

of distributed management. Based on the derived probabilistic model, we achieve

global management objectives (e.g., link scheduling to maximize the one-hop capacity,

preemption-based resource allocation) with a fully distributed management, while

providing a certain performance guarantee.

To achieve a fundamental and systemtic modeling, different from top-down ap-

proaches in machine learning which usually assume a model in the beginning, we

take a bottoms-up approach so that conditions and algorithms on when and how

can be studied through internal network properties and externally imposed manage-

ment constraints, whose information can be obtained easily. We develop an analytical

framework for distributed configuration management of large wireless networks where

each node adjusts locally its physical and logical configuration through local infor-

mation exchange with neighbors. We investigate whether and when a near-optimal

global network management can be obtained with local cooperations among nodes.

To get those answers, we first derive a global probabilistic model of a network

configuration which characterizes the complex spatial dependence of a set of network

variables jointly. The global model is thus determined by these internal network
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characteristics and management requirements. We then apply probabilistic graphical

models in machine learning to show when the global model can be approximated by

local models with a certain neighborhood system. This results in a sufficient condition

for distributed configuration management to be nearly-optimal: the global model on

a network configuration needs to be approximated within a given accuracy by a local

model, which belongs to Markov Random Fields.

The considered network management applications include the fair link-scheduling

that maximizes the one-hop capacity, the adaptive configuration management ac-

cording to random failures and environment changes, and the management robust-

ness upon these random events. For example, for the link scheduling of maximizing

the one-hop capacity, we derive a near-optimal distributed algorithm, based on the

probabilistic inference algorithm of the probabilistic graphical models.

We believe that this graphical model based approach fits well as the framework

of the distributed network management for various networks and applications. That

is, the proposed approach can characterize the optimality and the complexity of the

distributed managements in a systematic way over different scenarios.

To derive a complexity upper-bound of the policy-based resource allocation (i.e.,

connection preemption problem), we convert the preemption problem in the domain

of a routing problem. The preemption problem can be represented with a flow graph

(i.e., a virtual network topology), and the least-cost route in the flow graph corresponds

to the optimal decision; therefore, the complexity can be derived from that of the

routing problem. The complexity is shown to be NP-complete, as known.

To understand when and whether the scalable policy-based resource allocation

is feasible in a fully distributed way, we study the cause of complexity of resource

allocation. We have shown that the routed paths of active flows cause the spatial

dependence on the decisions of different links. To overcome this complexity spatial
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dependence, a local dependency model is derived. We have identified sufficient con-

ditions on when the approximation error of the local model resides within an error

bound. Moreover, randomized and distributed decision algorithms are proposed over

the local model. We have shown that as the cooperating neighborhood size increases,

the optimality in terms of preemption costs increases at the cost of the increased com-

plexity in terms of communication and computation. The optimality and complexity

are well characterized with the neighborhood system over the neighboring links.

We have shown through analysis and simulations that for short-range dependent

flows, information exchange with only nearest neighbors can significantly improve

the performance of preemption. The use of more neighbors would result in a near-

optimal performance but the improvement is not as pronounced when the complexity

increases.

5.2 Future Research Directions

Distributed approach is essential for the scalable management of large networks.

There is a remaining open issue and a promising application for the distributed man-

agement, which are listed as follows.

Distributed management can be characterized with the randomness, originating

from the independent and asynchronous decisions and the insufficient neighborhood

size.

We have shown that the ultimate asynchronous decisions of all nodes in the net-

work depend on the sequence of the decision-making of nodes in the network, which

causes the local optimal traps. To make the ultimate asynchronous decisions be in-

dependent of the random sequence of decision-making of nodes, we have counted on

the statistical decisions. To do so, we have proposed to represent the iterative and

asynchronous decision-makings on the resource allocation in the wireless networks
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with a probabilistic model.

The remaining open issue is about the problem of localized information exchange.

That is, because of packet flooding issues during information exchanges, each node

can maintain only a partial (or local) logical topology of a large network. We refer to

the range of the partial topology information of a node as the interference range of the

node. A node cannot consider the residual logical topology outside the interference

range on the decisions of scheduled channel-access. In the literature, the residual in-

terference is simply ignored in most cases. However, the residual interference cannot

always be ignored; moreover, without a proper consideration of the residual interfer-

ence, the required global management objectives (e.g., SINR constraint) cannot be

guaranteed. We study how to consider the ignored long-range spatial dependence in

the distributed decisions.

We show that the iterative, statistical, and asynchronous resource allocations can

be represented with a localized factor graph, which shows a localized dependence.

Asynchronous decision-making with local topology information can be done with

message-passing algorithm on the factor graph.

In the cognitive-radio networks, primary connections (i.e., users) can remove on-

going active connections of secondary users. Resource utilization of primary and

secondary connections resembles the shared resource management in the multi-class

networks with different priorities. We thus propose to formulate the resource allo-

cation problem between the primary and secondary connections in cognitive radio

networks with that of the multi-class networks, where there are three priority ser-

vices (i.e., primary users > secondary users with quality-of-service (QoS) service with

bandwidth reservation > secondary users with best-effort service).

The resource allocation can be investigated by considering the spatial dependence
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of the decisions at links. We study when the spatial dependence of links can be as-

sumed to be independent with a good approximation. This independence assumption

provides a great computational efficiency.
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APPENDIX A

PROOF OF THEOREM 1

|H(σ∗|X)−H(σ̂|X)

H(σ∗|X)
| ≤ |H(σ∗|X)−H(σ̂|X)|u

|H(σ∗|X)|l
, where the super-scripts u and l denote an

upper and a lower bound of the corresponding quantity.
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Figure 31: Optimal and Sub-optimal Hamiltonians

Figure 31 shows the relative position of related Hamiltonian values in caseH(σ∗|X)

> H(σ̂|X), i.e., H(σ∗|X), H(σ̂|X), H l(σ∗|X), and H l(σ̂|X). Note that H(σ∗|X)

≤ H(σ̂|X) and H l(σ∗|X) ≤ H l(σ̂|X). From Figure 31, |H(σ∗|X) − H(σ̂|X)| ≤

|H(σ̂|X) − H l(σ̂|X)| + |H(σ∗|X) − H l(σ∗|X)|. For any configuration (σa|Xa),

|H(σa|Xa)−H l(σa|Xa)| ≤ |RI(σa,Xa)|+ |R3(σa,Xa)|. We denote an upper bound

of |R3(σa,Xa)| and |RI(σa,Xa)| with I3 and IR, respectively.
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(i):|R3(σa,Xa)| ≤

rf

rc
∑

k1=1

rf

rc
∑

k2=1

2Ptk
−α
2

1 k
−α
2

2 r−αc

≤ 2Pt

(

1 + (

∫

rf
rc

k=1

k
−α
2 dk)

)2

· r−αc

=























2Ptr
−α
c (1 + 0.5 ln C)2, α = 2
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−α
c

(α−2)2
(α− 2(C)

2−α
2 )2, α > 2

= I3.
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Figure 32: Cardinality of the k-th Frontier

(ii) IR: For an active dipole σij , the set of neighboring active dipoles at the kth

frontier is denoted with Gk, which is shown in Figure 32. The cardinality of Gk is

upper bounded, i.e., |Gk| ≤ 2π
θ

= π/ sin−1
(

rc
2

rf +(k−1)rc

)

< 2π(rf +(k− 1)rc)/rc. Refer

Figure 32 for the definition of θ.
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For an active dipole σij , an upper bound of the residual interference outside in-

terference range is denoted with IkU
, i.e.,

RIij (σ,X) ≤
kU
∑

k=1

2Pt2π · (rf + (k − 1)rc)
2−α

2

rc
(lth(1 + ǫ0))

−α
2

= IkU
,

where kU is a constant that satisfies quadratic inequalities of

kU−1
∑

k=1

2π
rf + (k − 1)rc

rc
<

(N − 2)lth(1 + ǫ0)

rc
≤

kU
∑

k=1

2π
rf + (k − 1)rc

rc
, (38)

where the value (N−2)lth(1+ǫ0)
rc

denotes an upper bound of the maximum number of

available active dipoles except σij in a network with total N nodes.

From Eq.(38), kU can be obtained that klU ≤ kU < kuU , where

kuU = 1
2

(

(3 − 2rf
rc

) +
√

(
2rf
rc

− 1)2 + 4
π
(N − 2)( lth(1+ǫ0)

rc
)

)

.

In Eq.(38), the summation
∑kU

k=1 g(k)
−α is upper bounded with the integration of

(g(1)−α +
∫ kU

k=1
g(k)−αdk). For our convenience, we first derive an upper bound of the

following quantity (rf + (kuU − 1)rc),

rf + (kuU − 1)rc (39)

≤ rf + rc/2(1 − 2rf/rc) + rc/2 ·
√

(
2rf
rc

− 1)2 +
4

π

(N − 2)lth(1 + ǫ0)

rc

≤ rc/2 + rc/2



(2rf/rc − 1) + 2

√

Nlth(1 + ǫ0)

πrc





≤ rf +

√

Nlth(1 + ǫ0)rc
π

≤ rf +
√

Nlthrc.

117



www.manaraa.com

By replacing kU with kuU in Eq.(38) and rf with
√
Crc,

IkU

≤ 2Pt2π

rc(lth(1 + ǫ0))
α
2

(

r
2−α

2
f +

∫ ku
U

1

(rf + (k − 1)rc)
2−α

2 dk

)

≤



















































Pt4π

r2c(lth(1+ǫ0))
α
2

(

1√
C + ln(1 +

√

Nlth/(Crc)
)

, α = 4

Pt4π

r2c(lth(1+ǫ0))
α
2

(

C 2−α
4 r

4−α
2

c + 2
4−α ·

(

−(
√
Crc)

4−α
2 + (

√
Crc +

√
Nlthrc)

4−α
2

))

, α 6= 4.

= IR.

Thus, |H(σ∗|X) − H(σ̂|X)| ≤ |H(σ̂|X) − H l(σ̂|X)| + |H(σ∗|X) − H l(σ∗|X)|

≤ 2(IR + I3)Nσ
∗, where Nσ

∗ is total number of active dipoles in σ∗ given X.

Next, note that |H(σ∗|X)| ≥ min{Ptl−αij − ∑

mn 6=ij Ptl
−α
2
mj l

−α
2
ij } N∗

σ for ∀ σij = 1.

For σij = 1, to satisfy a given SINRth, a sufficient condition is (Pt(
∑

mn 6=ij l
−α
2
mj )

2 +

Nb)/(Pt(l
−α
2
ij )2) ≤ 1/SINRth, thus (

∑

mn 6=ij l
−α
2
mj )2 ≤ (

l−α
ij

SINRth

−Nb

Pt
). Therefore, |H(σ∗|X)|

≥ (Ptl
−α
th (l + ǫ0)

−α − Ptl
−α
2
th (l − ǫ0)

−α
2

√

l
−α
2
th (1 − ǫ0)

−α
2 SINR−1

th − Nb

Pt
) N∗

σ .

As a result, |H(σ∗|X)−H(σ̂|X)

H(σ∗|X)
| ≤ ǫ∆, where ǫ∆ = 2(IR + I3)/ID, where ID =

Ptl
−α
th (l + ǫ0)

−α − Ptl
−α
2
th (l − ǫ0)

−α
2

√

l
−α
2
th (1 − ǫ0)

−α
2 /SINRth − Nb

Pt
.
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As a result, in case of ǫ0=0 (for simple representation),

ǫ∆ =



































































I
r2c

(

(2 + ln C)2 + 4π
lth

(rc +
√
Nlthrc)

)

, α = 2

I
r2c

(

2
r2c

(2 − 1
C )2 + 4π

l2
th

( 1√
C + ln(1 +

√

Nlth
Crc ))

)

, α = 4

I
r2c

(

2(α−2C
2−α

2 )2

(α−2)2rα−2
c

+ 4π

l
α
2
th

(

C 2−α
4 r

4−α
2

c + 2
4−α (

−(
√
Crc)

4−α
2 + (

√
Crc +

√
Nlthrc)

4−α
2

)))

, o.w.,

where I= 2/
(

l
−α
2
th (l

−α
2
th −

√

l−αth /SINRth −Nb/Pt)
)

.

Moreover, |H(σ∗,X
∗
)−H(σ̂,

ˆX)

H(σ∗,X
∗
)

| ≤ ςσ |H(σ∗|X∗
)−H(σ̂| ˆX)

H(σ∗|X∗
)

| + (1− ςσ) |H(X
∗
)−H(

ˆX)

H(X
∗
)

|.

Since the management decisions on (σ, X) are assumed to be done sequentially from

X to σ, X∗=X̂. Thus, |H(σ∗,X
∗
)−H(σ̂,

ˆX)

H(σ∗,X
∗
)

| ≤ ςσ |H(σ∗|X∗
)−H(σ̂|X∗

)

H(σ∗|X∗
)

| ≤ ςσǫ ≤ ǫ.
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APPENDIX B

PROOF OF LEMMA 1

First, note that hpci is the highest preempted class only with the information at link

i and without considering the information at the other links.

For link i, denote the bandwidth of preempted flows, whose priority is greater

than hpci and lower than cnew, with ∆i (i.e., ∆i =
∑cnew−1

k=hpci+1 ∆k
i ). Here ∆k

i is the

amount of preempted bandwidth of class k at link i, for k > hpci.

Note that ∆i is due to the preemptions at the other hops on the preempting route.

To be specific, at another hop j on the preempting route with hpcj > hpci, a flow of

class c (for hpci ≤ c ≤ hpcj) that passes through the link i can be preempted and

contribute to ∆i. Refer Figure 20 as an illustration of ∆i, where hpci=2.

Due to ∆i, at link i, the effective bandwidth of the new flow can be considered as

bnetnew = bnew − ∆i, which can even change the value hpc of link i (e.g., from class hpci

to class k with k < hpci). Therefore, for two links i and j on the preempting route,

hpci and hpcj are dependent.
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APPENDIX C

PROOF OF LEMMA 2

Consider two links (i, j) and (m,n). Let |(i, j)− (m,n)| denote the distance of these

two links. The distance of two links is the hop-counts of the shortest path between

them.

In case |(i, j)−(m,n)| ≤ h0, there may be a flow that shares both links. Otherwise,

i.e. |(i, j) − (m,n)| > h0, there cannot be such a flow that shares both links.

Thus, for the active flows of a link (i, j), they can be found only at the links

{(m,n)} for |(i, j) − (m,n)| ≤ h0. That is, for the link (i, j), given the decision

information on all active flows at (m,n) for |(i, j)−(m,n)|, the link (i, j) comes to have

all decision information, done at the other links, about its active flows. Therefore,

the decisions at link (i, j) are conditionally independent of the other links outside of

h0 hops.
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APPENDIX D

PROOF OF LEMMA 3

There are multiple routes from node i to node j on the regular topology in assumption

(1), one of which is the preempting route. Since the nodal degree of each node is d0,

the probability that a connection that passes link (i − 1, i) on the preempting route

trespasses through the next link (i, i + 1) is ( 1
d0−1

). Thus, the probability that an

active flow trespasses the links (i − 1, i), · · · , (j, j + 1) on the preempting route is

( 1
d0−1

)|j−i|. Evidently, this corresponds to a lower-bound of Pij .
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APPENDIX E

PROOF OF LEMMA 4

Consider two nodes i and j on the preempting route. Based on the assumption that

each connection follows the shortest path between source-destination pair, the upper

bound of the probability Pij can be obtained by counting the total number of shortest

paths between nodes i and j with |j − i| hops.

An upper bound of the number of shortest paths from node i to j with |j − i|

hops is always bounded by C(|j − i|, |j−i|
2

). To be specific, a shortest-path from node

i to j will be composed of k horizontal and |j − i| − k vertical steps, and the total

number of shortest paths from node i to j is C (|j − i|, k), for 1 ≤ k ≤ |j − i|. And

it is obvious that C(|j − i|, |j−i|
2

)= max{C (|j − i|, k), for 1 ≤ k ≤ |j − i|}. Thus, an

upper bound of the number of shortest paths from node i to j with |j − i| hops is

C(|j − i|, |j−i|
2

).

Now, consider a set of nodes which are separated with node i by the distance of

|j−i| hops. Here the distance means the hop-counts of a shortest path. We count the

total number of shortest paths from node i to the set of nodes, separated by |j − i|

hops from node i.

Starting from node i, we can reach one of such nodes by taking r horizontal steps

and |j − i| − r vertical steps, for 1 ≤ r ≤ |j − i|, where the direction (e.g. positive or

negative) of all vertical steps or all horizontal steps needs to be the same.

For instance, with all positive vertical and horizontal steps, the number of shortest

paths with the distance of |j− i| hops from node i is
∑|j−i|

r=1 C(|j− i|, r) ·C(r, r). From

binomial formula,
∑|j−i|

r=1 C(|j − i|, r) = 2|j−i|− 1. There are four combinations about

the same directions of vertical/horizontal steps. However, the nodes that are located
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on the line of radian 0, π
2
, π, and 3π

2
centered at node i are counted twice. Thus, a

lower bound of the total number of shortest-paths from node i to the set of nodes is

2(2|j−i| − 1) for |j − i| = 2, and 3(2|j−i| − 1) for |j − i| > 2.

Note that an upper bound of probability Pij is the ratio between an upper bound

of the total number of shortest paths from node i to j and a lower bound of the total

number of shortest paths from node i to the set of nodes, which are separated from

node i by |j − i| hops. Thus,

Pij ≤











C(|j−i|, |j−i|
2 )

2(2|j−i|−1)
, |j − i| = 2

C(|j−i|, |j−i|
2 )

3(2|j−i|−1)
, |j − i| > 2.

(40)

Consider |j−i| >> 1. From stirling’s approximation, n! ≈
√

2πexp(−n)nn+0.5. Thus,

the numerator becomes 2|j−i|+1√
2π|j−i|

, and P u
ij ≈ 1

2
√

2π|j−i|
.
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APPENDIX F

PROOF OF THEOREM 3
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Figure 33: Optimal and Suboptimal Hamiltonians

Consider a randomly generated set of active flows in a network and a randomly

chosen preempting route that is composed of L hops.

Then, ∆= |H(d∗) − H(d̂)|. Figure 33 shows the relative position of related

Hamiltonian values H(d∗), H(d̂), H l(d∗), and H l(d̂) for the case of H(d∗) > H(d̂).

Note that H(d∗) ≤ H(d̂) and H l(d∗) ≤ H l(d̂). From Figure 33, |H(d∗) −H(d̂)| ≤

|H(d̂) −H l(d̂)| + |H(d∗) −H l(d∗)|.

Consider an active flow k on a link (i, i + 1) of a preempting route. For the

local model H l(d) of neighborhood size Nd, if the active flow continues on the links

(i+Nd+m, i+1+Nd+m) or (i−Nd−m, i+1−Nd−m) for m ≥ 1, this continuity

cannot be considered with the local model of Nd.

From the second term of (28), the error caused by the flow that leaves at link
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(i + Nd + m, i + 1 + Nd + m) for m ≥ 1 is −Bk with this continuity probability of

PNd+m−1
c (1 − Pc). Therefore, for an active flow on the preempting route, the total

expected error for ∀m ≥ 1 is less than Bk
∑∞

m=1 P
Nd+m−1
c (1 − Pc) = BkPNd

c .

Thus, for any configuration d, from (28) and (30), the total expected error caused

by all active flows on a preempting route is E(|H(d) − H l(d)|), which is equal to

E(∆).

E(∆) ≤ fmaxp
Nd
c B0(1 + ǫB)L ≤ pNd

c B0
1 + ǫB
1 − ǫB

L, (41)

where fmax denotes the maximum number of active flows at a link. fmax = C
B0(1−ǫB)

,

where C is the link capacity.
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APPENDIX G

PROOF OF THEOREM 4

From Theorem 3, E(∆) ≤ pNd
c C 1+ǫB

1−ǫBL. If the right term of the above inequality is

less than or equal to ǫth, E(∆) ≤ ǫth.

Thus, from simple algebraic manipulations, if pNd
c ≤ ǫth

CL
1−ǫB
1+ǫB

, then ∆ ≤ ǫth.

Apply a log function to both sides of the above inequality, for 0 < pc < 1. Since

log(pc) < 0 for 0 < pc < 1, if Nd ≥ logpc
( ǫth
CL

1−ǫB
1+ǫB

), then ∆ ≤ ǫth and also E(∆) ≤ ǫth.
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